期刊文献+

高阶拟线性变时滞差分方程解的振动性和渐近性 被引量:2

Oscillatory and Asymptotic Properties of Higher Order Quasi-linear Difference Equations with Variable Delay
原文传递
导出
摘要 对一类高阶拟线性变时滞差分方程进行了研究,给出了解振动或者单调趋近了0的一些充分性结论,同时给出例子验证其有效性.所得结果推广了已有结果. Oscillatory and asymptotic properties of higher order quasi-linear difference equations with variable delay are studied, Some sufficient conditions for the solutions to be oscillatory or tend to zero are given. An example is presented to illustrate the effects of our theorems. Results obtained here extend some known results.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第12期179-183,共5页 Mathematics in Practice and Theory
基金 广东海洋大学科研基金资助项目(0512147)
关键词 振动性 渐近性 高阶差分方程 拟线性 oscillation asymptotic property higher order difference equation quasi-linear
  • 相关文献

参考文献5

  • 1Zhou X L, Yan J R, Oscillatory and asymptotic properties of higher order nonlinear difference equations [J].Nonlinear Anal, 1998. (31) :493--502.
  • 2Thandapani E, Ravi K, Greaf J K. Oscillation and comparison the or ems for half-linear second-order difference equations[J]. Comput Math Appl,2001. (42) :953--960.
  • 3Saker S H. Cheng S S. Oscillation criteria for difference equations with damping terms[J]. Appl Math Comp, 2004. (148) : 421--442.
  • 4EI-Morshedy H A, Grace S R. Comparison theorems for second-order nonlinear difference equations[J]. J Math Aanl Appl.2005. (306) :106-121.
  • 5Agarwal R P. Grace S R. O' Regan D. Oscillation of Difference Equations and Functional Differential Equations[M]. Kluwer. Dordrecht,2000.

同被引文献29

  • 1杨甲山.时间测度链上具变时滞的二阶非线性动力方程的强迫振动[J].山西大学学报(自然科学版),2011,34(4):543-547. 被引量:2
  • 2ZHOU Zhan 1, YU JianShe 1 & CHEN YuMing 21 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China,2 Department of Mathematics, Wilfrid Laurier University, Waterloo N2L 3C5, Canada.Periodic solutions of a 2nth-order nonlinear difference equation[J].Science China Mathematics,2010,53(1):41-50. 被引量:10
  • 3李秀云,张敏静,俞元洪.高阶中立型差分方程的强迫振动[J].黑龙江大学自然科学学报,2006,23(4):557-560. 被引量:1
  • 4Zhou X L,Yan J R.Oscillatory and asymptotic properties of higher order nonlinear difference equations[J].Nonlinear Anal:TMA,1998,31:493-502.
  • 5Zhou Y.Oscillation and nonoscillation criteria for second order quasilinear difference equation[J].J Math Anal Appl,2005,303:365-375.
  • 6Agarwal R P,Grace S R,O'Regan D.Oscillation Theory for Difference and Functional Differential Equations[M].Dordrecht:Kluwer Academic,2000.
  • 7Hooker J W,Patula W T.A second-order nonlinear difference equation:oscillation and asymptotic behaviour[J].J Math Anal Appl,1983,91:9-29.
  • 8Kiguradze I T,Chanturia T A.Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations[M].Dordrecht:Kluwer Academic,1993.
  • 9Mirzov D D.The oscillatiory nature of the solutions of a nonlinear differential system of Emden-Fowler type[J].Differentsial'nye Uravneniya,1980,16:1980-1984.
  • 10Cheng S S,Patula W T.An existence theorem for a nonlinear difference equation[J].Nonlinear Anal:TMA,1993,20:193-203.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部