期刊文献+

基于分数傅里叶变换的混沌图像加密方法 被引量:14

Image Encryption Method Based on Chaotic Sequences and Fractional Fourier Transform
在线阅读 下载PDF
导出
摘要 基于混沌映射的图像置乱是图像加密的一种常用方法,加密过程利用Logistic混沌动力学系统过程既非周期又不收敛,且对初始条件敏感的特性,产生实数值混沌序列。对数字图像进行空域置乱和分数傅里叶变换,实现图像的双重加密。计算机模拟表明该方法具有很好的加密效果。 The picture scrambling algorithms based on chaos are frequently used for images secure communications. This computing method harnesses the randomicity and the sensitivity of the original value of the Logistic chaotic sequence, to generate the real value sequence. This paper presents an image encryption technology based on chaotic sequences and fractional Fourier transform. The experimental results show that the technology is valid and has good security.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第12期172-174,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60572129)
关键词 混沌 分数傅里叶变换 图像置乱 图像加密 Chaos Fractional Fourier transform Image scrambling Image encryption
  • 相关文献

参考文献6

  • 1Namias V.The Fractional Order Fourier Transform and Its Application in Quantum Mechanics[J].Inst.Maths.Appl.,1980,25(1):241-265.
  • 2何俊发,李俊,王红霞,盛兆玄.不对称离散分数傅里叶变换实现数字图像的加密变换[J].光学技术,2005,31(3):410-412. 被引量:17
  • 3Ozaktas H M,Mendlovic D.Fractional Fourier Optics[J].Journal of the Optical Society of America,1995,10(12):2522-2531.
  • 4McBride A C,Kerr F H.On Namiass's Fractional Fourier Transform[J].IMA Journal of Mathematics Applied in Medicine and Biology,1987,15(39):1875-1881.
  • 5刘树田,孙凯霞,任宏武.分数傅立叶变换的数值模拟算法[J].计算物理,1997,14(6):760-764. 被引量:7
  • 6Hui Xiang.Digital Watermarking Systems with Chaotic Sequences[C]//Proc.of Electronic Imaging,Security and Watermarking of Multimedia Contents.1999.

二级参考文献6

  • 1Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. J Lnst Maths Applies, 1980, 25(1) :241-265.
  • 2Mendlovie D, Ozakatas H M. Fractional Fourier transforms and their optical implementation: I[J]. J. Opt. Soc. Am, 1993, A 10:1875-1881.
  • 3Mendlovic D, Zalevsky Z, et al. New signal representation based on the fractional Fourier transform[J]. J. Opt. Soc. Am, 1995, A 12: 2424-2431.
  • 4Garcia J, Mas D, et al. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm[J]. Applied Optics,1996,35(35) :7013-7018.
  • 5Candan C, Kutay C A, Ozaktas H M. The discrete fractional Fourier transform[J]. IEEE Trans. Signal Processing, 2000, 48(. 5) : 1329-1337.
  • 6Ozaktas H M, Arikan O, et al. Digital computation of the fractional Fourier transform[J]. IEEE signal processing, 1996, 44 (9):2141-2150.

共引文献21

同被引文献131

引证文献14

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部