4MacQueen J B. Some Methods for Classification and Analysis of Multivariate Observations [ C ]. Proceedings of the 5 th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley University of California Press, 1967.
1[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
2[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
3[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
4[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.
5[1]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1995.
6[2]Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning,1995,20:273-297.
7[4]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
8[5]Osuna E, Freund R, Girosi F. Training Support Vector Machines: An Application to Face Detection[A]. Proceedings of IEEE Conference on CVPR'97[C].Puerto Rico,1997.130-136.
9[6]Joachims T. Making Large-Scale SVM Learning Practical[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999.
10[7]Platt J C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999.185-208.