期刊文献+

带局部形状参数的三次均匀B样条曲线的扩展 被引量:16

Extensions of Uniform Cubic B-Spline Curve with Local Shape Parameters
在线阅读 下载PDF
导出
摘要 带形状参数的B样条曲线的构造已成为计算机辅助几何设计中的热点问题.为了使形状参数具有局部修改功能,给出了两类带局部形状参数的调配函数,它们都是三次均匀B样条基函数的扩展.基于给出的调配函数,定义了两种带局部形状参数的分段多项式曲线.可以通过改变局部形状参数的取值对曲线进行局部调整.调整形状参数可使三次多项式曲线在三次均匀B样条曲线远离控制多边形的一侧摆动,而四次多项式曲线在三次均匀B样条曲线的两侧摆动.最后讨论了它们在曲线设计及曲线插值中的应用.造型实例表明,该类曲线在计算机辅助几何设计中具有重要的应用价值. The construction of B-spline curves with shape parameters has become the hotspot in computer aided geometric design. However, the shape parameters of the curves in previous papers are all global parameters. In order to introduce B-spline curves with local shape parameters, two classes of polynomial blending functions with local shape parameters are presented in this paper. Both of them are extensions of cubic B-spline basic functions. The blending functions have similar properties of classical cubic B-spline basic functions. Based on the given blending functions, a method of generating piecewise polynomial curves with local shape parameters is proposed. By changing the values of the local shape parameters, the shape of the curves can be manipulated locally. The cubic curves can be manipulated to approximate the cubic B-spline curves from their sides away from the control polygons by changing the values of the shape parameter. Similarly, the quartic curves can also be manipulated to approximate the cubic B-spline curves from their both sides by changing the values of the shape parameters. The geometric meanings of the local shape parameters are also discussed. Their applications in curve design and interpolation are also presented. The modeling examples illustrate that these new curves are very valuable for computer aided geometric design.
作者 徐岗 汪国昭
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第6期1032-1037,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60473130) 国家"九七三"重点基础研究发展规划基金项目(G2004CB318000)~~
关键词 三次均匀B样条 局部形状参数 曲线设计 插值 cubic uniform B-spline local shape parameter curve design interpolation
  • 相关文献

参考文献7

二级参考文献51

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:237
  • 2[1]Les Piegl, Wayne Tiller. The NURBS Book. Berlin: Springer-Verlag, 1995
  • 3[2]Gerald Farin. NURBS Curves and Surface from Projective Geometry to Practice Use. MA: Wellesley, 1995
  • 4[3]Les Piegl. Modifying of the shape of rational B-spline. Part 1: Curves. Computer Aided Design, 1989, 21(8): 509~518
  • 5[4]Les Piegl. Modifying of the shape of rational B-spline. Part 2: Surfaces. Computer Aided Design, 1989, 21(9): 538~546
  • 6[5]B Fowler, R Bartels. Constrained-based curve manipulation. IEEE Computer Graphics and Application, 1993, 13(5): 43~49
  • 7[6]J Ishida. The general B-spline interpolation method and its application to the modification of curves and surfaces. Computer Aided Design, 1997, 29(11): 779~790
  • 8[7]Hu Shimin .et al.. Shape modification of NURBS curves via constrained optimization. In: Proc of the 6th Int'l Conf on Computer Aided Design & Comutper Graphics. Shanghai: Wenhui Publisher, 1999. 958~962
  • 9[8]Hu Shimin, Li Youfu, Ju Tao .et al.. Modifying the shape of NURBS surfaces with geometric constraints. Computer Aided Design, 2001, 33(12): 903~912
  • 10[9]CK Au, MMF Yuen. A unified approach on shape modification of NURBS curve. Computer Aided Design, 1995, 27(2): 85~93

共引文献391

同被引文献91

引证文献16

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部