期刊文献+

小样本机器学习算法的特性分析与应用 被引量:2

Applications and Analysis for the Features of the Machine Learning Algorithm with Limited Samples
在线阅读 下载PDF
导出
摘要 基于经典统计学的机器学习算法,在解决小样本学习问题时表现得不能令人满意。在总结分析小样本机器学习算法特点的基础上,以支持向量机(SVM)学习算法为例,定量分析了影响其泛化性能、学习性能的几个因素,实验结果与理论分析结论取得了良好的一致性;SVM用于解决KTH-TIPS纹理图像分类问题,取得了很好的实验结果。 Some limitation of the machine learning algorithm based on the classical statistics has been displayed when it is used to solve the learning problems with limited samples. On the foundation of summarizing their characteristics, the quantitative analysis for generalization function and learning function are presented in this paper, taking example for the support vector machine (SVM) algorithm. The consistency between experimental result and theoretical conclusion is perfect, and a favorable classification result has been gained when SVM is used to KTH-TIP texture images.
出处 《海洋测绘》 2007年第3期16-19,共4页 Hydrographic Surveying and Charting
关键词 图像处理 机器学习 统计学习理论 支持向量机 纹理图像 image processing machine learning statistical learning theory support vector machine texture image
  • 相关文献

参考文献12

二级参考文献44

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:195
  • 2辛宪会,郭建星,解志刚,邱振戈.一种基于支持向量机的纹理图像分类法[J].海洋测绘,2005,25(2):41-43. 被引量:8
  • 3吴健平,杨星卫.遥感数据监督分类中训练样本的纯化[J].国土资源遥感,1996,8(1):36-41. 被引量:29
  • 4韦岗 贺前华.神经网络模型学习及应用[M].北京:电子工业出版社,1994.85-98.
  • 5NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 6朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000.4.
  • 7Hara K., Nakayama K., Karaf A.A.M.. A training data selection in on-line training for multilayer neural networks. In: Proceedings of the IEEE World Congress on Computational Intelligence. The 1998IEEE International Joint Conference on Neural Networks Proceedings, 1998, 3: 2247~2252
  • 8Luo D.S., Chen K.. Refine decision boundaries of a statistical ensemble by active learning. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN'03), Portland, 2003, 1523~1528
  • 9Lampinen J., Litkey P., Hakkarainen H.. Selection of training samples for learning with hints. In: Proceedings of the International Joint Conference on Neural Networks, Washington, 1999, 2: 1438~1441
  • 10Pearson R, Coney G, Shwaber J. Imbalanced clustering for microarray time-series. Proceedings of the ICML' 03 Workshop on Learning from Imbalaneed Data Sets. Washington, DC,2003.

共引文献2359

同被引文献16

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部