期刊文献+

常规声压与声矢量信号非整数维谱性能比较研究 被引量:1

Comparing sound pressure signals and acoustic vector signals by nonintegral dimension spectrum
在线阅读 下载PDF
导出
摘要 为解决高阶谱算法复杂、计算量大和声压信号有限的抗干扰能力问题,提出了声矢量信号非整数维谱分析方法.利用可抑制高斯和对称分布噪声的高阶累积量非整数维谱对目标辐射噪声声压信号和声矢量信号进行了特征分析.分别采用功率谱图和三维动态谱图方法对常规声压和声矢量信号非整数维谱性能进行了直观比对.为获得定量分析结果,分别对不同背景噪声环境条件下,不同输入信噪比的常规声压与声矢量信号非整数维谱的轴频PBR及PD进行了详细计算.结果表明,声矢量信号非整数维谱特征提取与轴频检测能力优于常规声压信号,为高阶统计量应用于声矢量信号处理提供了一条途径. To resolve issues of computational complexity with higher-order spectra, as well as limit antijamming capabilities inherit with sound pressure signals, a nonintegral dimensional spectrum is proposed for analyzing sound pressure signals. The characteristics of pressure and vector signals of target radiated noise are analyzed by a nonintegral dimensional spectrum that can theoretically restrict high order cumulants of Gausslan and symmetrical distribution noise. Intuitionistic comparisons are made with respect to nonintegral dimensional spectrum performance of sound pressure and acoustic vector signals by using power spectrum and 3D dynamic spectrum analysis respectively. To get quantitative analysis results, the PBR and PD of propeller shaft frequency with different sound pressures and acoustic vector signals were calculated under various noise backgrounds and different SNR. Simulation suggests that feature extraction and detection of propeller shaft frequency through acoustic vector signal processing based on nonintegral dimensional spectrum is more effecive than when using conventional pressure signals. Using a nonintegral dimensional spectrum with higher-order statistics provides a new way for lower frequency acoustic vector signal processing.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第5期510-514,共5页 Journal of Harbin Engineering University
基金 国防科学技术工业委员会基础研究基金资助项目(51403050203CB0103)
关键词 声矢量信号 非整数维谱 特征提取 DEMON谱 轴频检测 acoustlc vector signal nonintegral dimensional spectrum feature extraction DEMON spectrum detection of propeller shaft frequency
  • 相关文献

参考文献8

  • 1孙贵青.[D].哈尔滨:哈尔滨工程大学,2001.
  • 2NIKIAS C L,MENDEL J M.Signal processing with higher-order spectra[J].IEEE Signal Processing Magazine,1993,10(3):10-37.
  • 3MENDEL J M.Tutorial on higher-order statistics(spectra) in signal processing and system theory:theoretical results and some applications[J].Proceedings of the IEEE,1991,79(3):278-305.
  • 4NIKIAS C L,RAGHUVEER M R.Bispectrum estimation:a digital signal processing framework[J].Proceedings of the IEEE,1987,75(7):869-891.
  • 5樊养余,陶宝祺,熊克,尚久浩,孙进才,李亚安.舰船噪声的1(1/2)维谱特征提取[J].声学学报,2002,27(1):71-76. 被引量:33
  • 6URICK R J.Principles of underwater sound:3rd ed.[M].New York:McGraw-Hill Book Company,1983.
  • 7KAI M H.Narrowband weak signal detection by higher order spectrum[J].IEEE Transactions on Signal Processing,1996,44(4):874-879.
  • 8HINICH M J,WILSON G R.Detection of non-gaussian signals in non-gaussian noise using the bispectrum[J].IEEE Transactions on ASSP,1990,38(7):1126-1131.

二级参考文献3

共引文献54

同被引文献6

  • 1MENDEL J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory:theoretical results and some applications [ J ]. Proceedings of the IEEE, 1991, 79 (3) :278-305.
  • 2NIKIAS C L, MENDEL J M. Signal processing with higherorder spectra[ J ]. IEEE Signal Processing Magazine, 1993, 10(3) :10-37.
  • 3Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm [ J]. Neural Networks, 1994,5 (6) :989-993.
  • 4Vijander Singh, Indra Gupta, H O Gupta. ANN-based estimator for distillation using Levenberg-Marquardt approach [ J ]. Engineering Applications of Artificial Intelligence, 2007,20(2) :249-259.
  • 5孙贵青.[D].哈尔滨:哈尔滨工程大学,2001.
  • 6王赟松,许洪国.快速收敛的BP神经网络算法[J].吉林大学学报(工学版),2003,33(4):79-84. 被引量:56

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部