期刊文献+

THE USE OF PLANE WAVES TO APPROXIMATE WAVE PROPAGATION IN ANISOTROPIC MEDIA 被引量:5

THE USE OF PLANE WAVES TO APPROXIMATE WAVE PROPAGATION IN ANISOTROPIC MEDIA
原文传递
导出
摘要 In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of Maxwell's equations in an isotropic medium to the case of an anisotropic medium. We verify that the underlying theoretical framework carries over to anisotropic media (however error estimates are not yet available) and completely describe the new scheme. We then consider TM mode scattering, show how this results in a Helmholtz equation in two dimensions with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In one special case, convergence can be proved. We then show some numerical results that suggest that the UWVF can successfully simulate wave propagation in anisotropic media. In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of Maxwell's equations in an isotropic medium to the case of an anisotropic medium. We verify that the underlying theoretical framework carries over to anisotropic media (however error estimates are not yet available) and completely describe the new scheme. We then consider TM mode scattering, show how this results in a Helmholtz equation in two dimensions with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In one special case, convergence can be proved. We then show some numerical results that suggest that the UWVF can successfully simulate wave propagation in anisotropic media.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2007年第3期350-367,共18页 计算数学(英文)
关键词 Ultra weak MAXWELL Plane wave Anisotropic medium. Ultra weak, Maxwell, Plane wave, Anisotropic medium.
  • 相关文献

参考文献32

  • 1I. Babuska and J. Melenk, The partition of unity method, Int. J. Numer. Meth. Engrg., 40 (1997), 727-758.
  • 2J. Berenger, A perfectly matched layer for the absorption of electromagnetics waves, J. Comput. Phys., 114 (1994), 185-200.
  • 3J. Carcione, Ground-penetrating radar: wave theory and simulation in lossy anisotropic media, Geophysics, 61 (1996), 1664-1677.
  • 4O. Cessenat, Application d'une nouvelle formulation variationnelle aux equations d'ondes harmoniques. Problemes de Helmholtz 2D et de Maxwell 3D, PhD thesis, Universite Paris IX Dauphine, 1996.
  • 5O. Cessenat and B. Despres, Application of the ultra-weak variational formulation of elliptic PDEs to the 2-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35 (1998), 255-299.
  • 6O. Cessenat and B. Despres, Using plane waves as base functions for solving time harmonic equations with the Ultra Weak Variational Formulation, J. Comput. Acoust., 11 (2003), 227-238.
  • 7W. Chew, Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
  • 8F. Collino and P. Monk, Optimizing the perfectly matched layer, Comput. Method. Appl. Mech. Engrg., 164 (1998), 157-171.
  • 9F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.
  • 10D. Colton, R. Kress and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math., 81 (1997), 269-298.

同被引文献3

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部