期刊文献+

基于小波域隐马尔可夫混合模型的SAR图像降斑算法 被引量:4

SAR images despeckling based on wavelet and hidden Markov mixture model
在线阅读 下载PDF
导出
摘要 在小波域马尔可夫随机场(MRF)和隐马尔可夫树(HMT)的基础上,提出了一种新的合成孔径雷达(SAR)图像降斑算法。该算法在对乘性噪声不取对数变换的情况下,融合了贝叶斯最小均方误差(MMSE)抑制噪声技术。为了提高HMT的速度,采用了一个新的隐马尔可夫半树模型,该模型考虑了小波系数的持续性和聚类性,分别用HMT和MRF刻画。仿真结果表明该算法在抑制斑点噪声的同时,有效的保持了边缘,避免对数变换带来的一些误差,取得了好的效果,其速度比HMT模型提高了二十倍。 An efficient despeckling method was proposed based on hidden Markov random field (MRF) and hidden Markov tree (HMT) in the wavelet transform for synthetic aperture radar images. The algorithm fused minimum mean square error despeckling technique in the circumstance of avoiding the log-transform. In order to increase the speed of HMT, a new hidden Markov half tree model was introduced. The clustering and the persistence of wavelet coefficients were taken into account, which were characterized by MRF and HMT respectively. Experimental results show that the method presented achieves good performance in terms of noise sup- pressing and edges preserving, and the running time is less than HMT by about twenty.
出处 《电波科学学报》 EI CSCD 北大核心 2007年第2期244-250,共7页 Chinese Journal of Radio Science
基金 国防重点实验室基金(51431020204DZ0101) 中国博士后科学基金(J63104020156)
关键词 SAR图像 小波降斑 MRF HMT 贝叶斯估计 SAR images, wavelet despeckling, MRF, HMT, Bayesian estimation
  • 相关文献

参考文献16

  • 1Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1980, 2(2): 156- 163.
  • 2Kuan D T, Sawchuk A A,Strand T C. Adaptive noise smoothing filter for images with signal-dependent noise [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1985, 7(2): 165-177.
  • 3Kuan D T, Sawchuk A A, Strand T C. Adaptive restoration of images with speckle[J]. IEEE Trans on Acoustics Speech and Signal Processing, 1987,35 (3) : 373-383.
  • 4Frost V S, Stiles J A, Shanmugan K S, et al.. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1982,4 (2) : 157-166.
  • 5Lopes A, Touzi R, Nezry E. Adaptive speckle filters and seene heterogeneity[J]. IEEE Trans Geosei. Remote Sensing, 1990,28(11): 992-1000.
  • 6Hagg W Sites M. Efficient speckle filtering of SAR images. Processing of the International Geoscience and Remote Sensing Symposium (IGARSS), 1994.
  • 7Donoho D L. De-Noising by soft-thresholding [J]. IEEE Trans. Information Theory, 1995,41 (3) : 613 - 627.
  • 8Matthew S Crouse, Robert D Nowak, and Richard G Baraniuk. Wavelet-based statistical signal processing using hidden markov models[J]. IEEE Trans Signal processing, 1998,46(4) : 886-902.
  • 9Hua Xie. SAR speckle reduction using wavelet denoising and markov random field modeling [J]. IEEE Trans Geosci. Remote Sensing, 2002,40 (10) : 2196- 2212.
  • 10Chipman H Kolaczyk, E McCulloch R. Adaptive Bayesian wavelet shrinkage[J]. J. Amer. Statist. Assoc., 1997,92(3): 1413-1421.

二级参考文献7

  • 1Krishnamachari S, Chellapa R. Multiresolution Gauss-Markov random field models for texture segmentation. IEEE Transactions on Image Processing, 1997,6(2):251~267.
  • 2Luettgen MR, Karl WC, Willsky AS. Efficient multiscale regularization with applications to the computation of optical flow. IEEE Transactions on Image Processing, 1994,3( 1 ):41~64.
  • 3Laferte J-M, Perez P, Heitz F. Discrete Markov image modeling and inference on the quadtree. IEEE Transactions on Image Processing, 2000,9(3):390~404.
  • 4Bouman CA, Shapiro M. A multiscale random field model for Bayesian image segmentation. IEEE Transactions on Image Processing, 1994,3(2):162~177.
  • 5Crouse MS, Nowak RD, Baraniuk RG. Wavelet-Based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing, 1998,46(4):886~902.
  • 6Chellappa R, Jain A. Markov Random Fields and Application. San Diego: Academic Press, 1991.
  • 7Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6(6):721~741.

共引文献26

同被引文献56

  • 1陈曦,张红,王超.基于AOS非线性扩散的SAR图像去噪研究[J].电波科学学报,2004,19(4):405-408. 被引量:2
  • 2沙宇恒,丛琳,孙强,焦李成.基于Contourlet域HMT模型的多尺度图像分割[J].红外与毫米波学报,2005,24(6):472-476. 被引量:22
  • 3V.Venkatachalam,H.Choi.Multiscale SAR image segmentation using wavelet-domain hidden Markov tree model[C].SPIE,1998,3497:141-151.
  • 4H.Choi,R.G.Baraniuk.Multiscale image segmentation using wavelet-domain hidden Markov models[J].IEEE Trans.Image Process.,2001,10(9):1309-1321.
  • 5M.N.Do.,M.Vetterli.The Contourlet transform:an efficient directional multiresolution image representation[J].IEEE Trans.Image Process.,2005,14(12):2091-2106.
  • 6Duncan D.Y.Po,M.N.Do.Directional multiscale modeling of images using the Contourlet transform[J].IEEE Trans.Image Process.,2006,15(6):1610-1620.
  • 7A.L.da.,J.Zhou Cunha,M.N.Do..The nonsubsampled Contourlet tansform:theory,design and application[J].IEEE Tans.Image Process.,2006,15(10):3089-3101.
  • 8Sha Yuheng,Jiao Licheng.Unsupervised image segmentation using Contourlet domain hidden Markov tree model[C].ICIAR,2005,LNCS3656:32-39.
  • 9L.Lin,L.Zhu,F.Yang et al..A novel pixon-representation for image segmentation based on Markov random field[J].Image Vision Comput.,2008,26(11):1507-1514.
  • 10S.Derrodea,G.Mercierb.Unsupervised multiscale oil slicksegmentation from SAR images using a vector HMC model[J].Pattern Recognition,2007,40(3):1135-1147.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部