摘要
马尔可夫随机场方法是图像分割中一个极为活跃的研究方向。本文介绍了基于马尔可夫随机场模型的一般理论与图像的关系,给出它在图像分割中的通用框架:包括空域和小波域图像模型的建立、最优准则的选取、标号数的确定、图像模型参数的估计和图像分割的实现,评述了其在图像分割中的应用,展望其发展的方向。
Markov random field method is a very active research field in image segmentation. This paper introduces the relationship between a general theory based on Markov random field method and the images, and provides a general framework in image segmentation, including the construction of spatial and wavelet domain image models, the selection of the optimization criterion, calculation of the number of labeling, parameter estimation of image models and the realization of image segmentation. The applications of image segmentation are reviewed. And a few possible trends are discussed.
出处
《中国图象图形学报》
CSCD
北大核心
2007年第5期789-798,共10页
Journal of Image and Graphics
关键词
马尔可夫随机场
图像分割
贝叶斯准则
参数估计
markov random field, image segmentation, bayesian principle, parameter estimation