摘要
规范形理论是研究非线性动力系统退化分含的强有力的方法.在本文里我们利用共轭算子法计算了具有幂零线性部分和不具有Z2-对称性的非线性动力系统的2阶、3阶和4阶规范形,讨论了几种余维3退化分含情况下的普适开析问题及其一些全局特性.
Normal form theory is a very effective method in the study of degenerate bifurations of nonlinear dynamical systems. In this paper, by using ad joint operator method, normal forms of order 3 and 4 for nonlinear dynamical system withnilpotent lincar part and Z2-asymmetry are computed. According to normal formsobtained, universal unfolings for some degenerate bifurcation cases of codimension 3 and simple global characterizations are discussed.
出处
《应用数学和力学》
CSCD
北大核心
1997年第5期421-432,共12页
Applied Mathematics and Mechanics
基金
国家自然科学基金
关键词
非线性动力系统
共轭算子法
规范形
振动
高阶
nonlinear dynamical system, ad joint operator method, normal formsof order 3 and 4, degenerate bifurcation of codimension 3, universalunfolding