期刊文献+

基于圆型限制性三体问题模型的行星卫星逃逸能量研究 被引量:4

Study on Escaping Energy in Circular Restricted Three-body Problem
在线阅读 下载PDF
导出
摘要 基于由飞行器、行星及其卫星组成圆型限制性三体问题模型,通过庞加莱映射的方法,研究了飞行器从行星卫星附近逃逸的问题。在Jacobi常数确定的前提下,通过逆向积分,飞行器从L1或L2点附近返回近月点,得到近月点速度出发速度。研究结果表明绕飞L1点和L2点逃逸行星卫星需要的最低能量是不同的,从月球表面逃逸所需的速度脉冲分别比开普勒算法节省46.5m/s和42.3m/s,且均小于Villac等人在Hill模型下得到38.9m/s,从而改进了Villac等人的相关工作,同时也给出了从太阳系主要行星卫星表面逃逸所需的最小能量。 Escaping trajectories are investigated using a Poincar6 map method in the circular restricted three body problem consisting of spacecraft, planet and moon. On the condition that Jacobi constant is fixed, the escaping trajectories are integrated back to the first periapsis from vicinity of L1 and L2 and the escaping velocity of moon is obtained. The results show that the optimal escaping velocities through the vicinity of L1 and L2 are different. Compared with the Kepler method it saves 46.5 m/s and 42.3 m/s △V escaping from the moon. It is more precision than the result of 38.9 m/s which is obtained by Villac in the Hill problem model. The optimal escaping velocities of the primary planetary moon in the solar system are also presented.
作者 何巍 徐世杰
出处 《航空学报》 EI CAS CSCD 北大核心 2007年第2期263-268,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60535010)
关键词 逃逸轨道 圆形限制性三体问题 庞加莱截面 escaping trajectory circular restricted three body problem Poincaré section
  • 相关文献

参考文献5

  • 1Belbruno E A,Carrico J P.Calculation of weak stability boundary ballistic lunar transfer trajectories[C]//AIAA/AAS Astrodynamics Specialist Conference,2000.
  • 2Belbruno E A.Low energy trajectories for space travel and stability transition regions[C]//Proceedings of IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,Oxford:IFAC Publ.,Elsevier Science Ltd,2000:7-12.
  • 3Yamakawa H,Kawaquchi J,Ishii N,et al.On earth-moon transfer trajectory with gravitational captrue[C]//Proceedings AAS/AIAA Astrodynamics Specialists Conference,Paper No.AAS93-633,1993.
  • 4Koon W S,Lo M W,Marsden J E,et al.Low energy transfer to the moon[J].Celestial Mechanics and Dynamical Astronomy,2001,81(1):63-73.
  • 5Villac B F,Scheeres D J.Escaping trajectories in the Hill three-body problem and applications[J].Journal of Guidance,Control,and Dynamics,2003,26(2):224-232.

同被引文献40

  • 1周军,蔡力,周凤岐.Hill区域内基于推广的Poincar映射的低能逃逸/捕捉轨道(英文)[J].宇航学报,2007,28(3):643-647. 被引量:3
  • 2乔栋,崔祜涛,崔平远.利用遗传算法搜索小天体探测最优发射机会[J].吉林大学学报(工学版),2006,36(1):97-102. 被引量:6
  • 3徐明,徐世杰.地-月系平动点及Halo轨道的应用研究[J].宇航学报,2006,27(4):695-699. 被引量:26
  • 4Coney C. Low energy transit orbits in the restricted three-body problem. SIAM J Appl Math, 1968, 16:732-746.
  • 5McGehee RP. Some homoclinic orbits for the restricted 3- body problem. [Ph D Thesis]. Madison: University of Wisconsin, 1969.
  • 6Koon WS, Lo MW, Marsden JE, et al. Dynamical Systems, the Three-Body Problem and Space Mission Design. New York: Springer-Verlag Inc, 2007.
  • 7Yamato H. Trajectory design methods for restricted problems of three bodies with perturbations. [Ph D Thesis]. Pennsylvania State University, 2003.
  • 8Bollt EM, Meiss JD. Targeting chaotic orbits to the moon through recurrence. Physics Letters A, 1995, 204:373-378.
  • 9Schroer CG, Ott E. Targeting in hamilton systems that have mixed regular/chaotic phase spaces. Chaos, 1997, 7(4): 373-378.
  • 10Macao EE. Using chaos to guide a spacecraft to the moon. In: IAC, Australia, 1998, IAF-98-A.3.05.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部