摘要
本文主要研究BCI=代数(X,*,0)的极小元集M与X本身之间的关系,得到当M是X的理想时,有X=B×M(B是X的BCK(?)部分),且其表示式是唯一的,即X的结构问题就转为BCK代数的结构问题和广义结合BCI-代数的结构问题以及它们之间的直积。并研究当M不是X的理想时,其生成的理想结构问题,从而得到一类真BCI-代数——极小元生成的BCI-代数的结构问题以及在同态关系下的性质。
In this paper, we study the relation-ship between the set M of minimal element of BCI-algebra (X, *, 0) and X itself. We obtain that X=B×M (B is BCK part of X) if M is an ideal of X, which has only one way to express i.e. the structure of X turns into the structure of BCK-algebra and generalized association BCI-algebra and the direct product among them. We also study the structure of generated idea by M is not an idela so we have the structure fo a class of real BCI-algebra (BCI-algebra generated by mnimal element)and some properties of homomorphism.
出处
《福建林学院学报》
CSCD
1990年第2期137-145,共9页
Journal of Fujian College of Forestry
关键词
极小元
子代数
理想
同态
minimal element, sub-algebra, ideal, homomorphism