期刊文献+

Strength and elastic properties of sandstone under different testing conditions 被引量:2

Strength and elastic properties of sandstone under different testing conditions
在线阅读 下载PDF
导出
摘要 A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^(-5), 10^(-4) and 10^(-3)/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric 'X' shape with various strain, and the average unloading modulus is larger than the average loading modulus. A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^-5, 10^-4 and 10^-3/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric ‘X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.
出处 《Journal of Central South University of Technology》 EI 2007年第2期210-215,共6页 中南工业大学学报(英文版)
基金 Project(Z110510) supported by Opening Research Foundation of the Chinese Academy of Sciences Key Laboratory of Rock and Soil Mechanics Project(20060390473) supported by China Postdoctoral Science Foudation Project(40172084) supported by the National Natural Science Foundation of China
关键词 strain rate STRENGTH deformation modulus Poisson ratio softening coefficient ROCK 沙岩 试验条件 强度 弹性 应变率
  • 相关文献

参考文献5

二级参考文献33

共引文献57

同被引文献25

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部