期刊文献+

基于图像尺度空间的几何不变特征点提取算法 被引量:8

Geometrically Invariant Feature Points Detection Based on Scale Space Theory
在线阅读 下载PDF
导出
摘要 图像特征点的提取是实现抗几何攻击数字水印算法的重要步骤,所提取的特征点是否鲁棒,将直接影响抗几何攻击水印的鲁棒性.Harris-Laplace角点检测方法是一种多尺度抗几何攻击角点提取方法,但计算比较复杂.将Harris-Laplace角点检测方法进行改进,把直接分析图像局部灰度值的角点提取方法与图象尺度空间的思想相结合,并兼顾多尺度的不同权值,则既可以保证角点抵抗一般几何攻击的鲁棒性,又减少计算复杂度的,根据此思路提出了加权平均Harris-Laplace角点检测方法来提取特征点.实验结果表明,该算法提取的图像特征点不仅具有很好的抵抗图像裁剪、几何缩放能力,而且计算复杂度明显低于相同重复检测率的Harris-Laplace角点检测算法. Feature extraction is a vital part of watermarking technology that resists geometrically attacks. The points extracted from the image will directly influence the robustness of the watermak exists in the image. This paper improves Harris-Laplace comer detector by presenting a novel method to extract geometrically invariant feature points based on the scale space theory. According to the experiments, the proposed method can select those feature points that resist several geometrically attacks such as scaling and cropping, but at the cost of lower computation.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第B12期2564-2568,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60502024) 湖北省自然科学基金(No.2005ABA267) 信息产业部资助的电子信息产业发展基金(No.信部运[2004]479号) 科技部资助的科技型中小企业创新基金(No.04C26214201284)
关键词 特征点提取 Harris角点算子 尺度空间 feature points extraction Harris comer detector scale space theory
  • 相关文献

参考文献12

  • 1Celik M U, et al. Analysis of feature-based geometry invariant watermarking[ A]. Security and Watermarking of Multimedia Contents [ C ]. San Jose, CA- Society of Photo-Optical Instrumentation Engineers, 2001.261 - 268.
  • 2Kutter M, S K Bhattacharjee, T Ebrahimi. Towards second generation watermarking schemes [ A ]. Proceedings of IEEE International Conference on Image Processing [ C ]. Los Alamitos,CA, USA: IEEE Computer Society Press, 1999.320 - 323.
  • 3Bas P, J M Chassery, B Macq. Geometrically invariant watermarking using feature points [ J ] . IEEE Transactions on Image Processing, 2002,11 (9) : 1014 - 1028.
  • 4Abdeljaoued Y, T Ebrahimi. Feature point extraction using scale-space representation[ A]. International Conference on Image Processing[ C]. Singapore: Institute of Electrical and Electronics Engineers Computer Society ,2004.3053- 3056.
  • 5He X C, N H C Yung. Curvature scale space corner detector with adaptive threshold and dynamic region of support[ A]. International Conference on Pattern Recognition[ C]. Cambridge,United Kingdom: Institute of Electrical and Electronics Engineers Inc. ,2004.791 -794.
  • 6Mokhtarian F, R Suomela. Curvature scale space for image point feature detection [ A ]. Seventh International Conference on mage Processing And Its Applications [ C]. Manchester,UK: Institution of Electrical Engineers, Stevenage, Engl, 1999.206 - 210.
  • 7Matsopoulos G, S Marshall. Feature migration in morphological scale space[ A]. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing [ C ]. New York:Institute of Electrical and Electronics Engineers, 1993.599 - 602.
  • 8陈白帆,蔡自兴.基于尺度空间理论的Harris角点检测[J].中南大学学报(自然科学版),2005,36(5):751-754. 被引量:79
  • 9Lindeberg T. Feature detection with automatic scale selection[ J ] . International Journal of Computer Vision, 1998,30 (2) : 79- 116.
  • 10Mikolajczyk K, C Schmid. Scale and affine invariant interest point detectors [ J ]. International Journal of Computer Vision,2004,60(1) :63 - 86.

二级参考文献11

  • 1Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381.
  • 2Pikaz A, Dinstein I. Using simple decomposition for smoothing and feature point detection of noisy digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8): 808-813.
  • 3Harris C, Stephens M. A combined corner and edge detector[A]. Matthews M M. Proceedings of the Fourth Alvey Vision Conference[C]. Manchester: the University of Sheffield Printing Unit, 1988. 147-151.
  • 4Deriche R, Giraudon G. A computational approach for corner and vertex detection[J]. International Journal of Computer Vision, 1993, 10(2): 101-124.
  • 5Baker S, Nayar S K, Murase H. Parametric feature detection[J]. International Journal of Computer Vision, 1998, 27(1): 27-50.
  • 6Parida L, Geiger D, Hummel R. Junctions: Detection, classification, and reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7): 687-698.
  • 7Schimid C, Mohr R, Bauckhage C. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2): 151-172.
  • 8Lindeberg T. Scale-space theory: A basic tool for analysing structures at different scales[J]. Journal Applied Statistics, 1994, 21(2): 223-261.
  • 9Babaud J, Witkin A P, Baudin M, et al. Uniqueness of the Gaussian kernel for scale-space filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1): 26-33
  • 10Schmid C, Mohrand R, Bauckhage C. Comparing and evaluating interest points[A]. Ahuja N, de Sai U. Proceedings of the Sixth International Conference on Computer Vision[C]. Washington: IEEE Computer Society, 1998. 230-235.

共引文献78

同被引文献88

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部