期刊文献+

运用局部形态SIFT描述法过滤网络淫秽图像方法的研究 被引量:2

Detecting Web Pornographic images based on local SIFT features
在线阅读 下载PDF
导出
摘要 各国政府和警方目前使用的传统淫秽图像检测方法主要以皮肤检测结果为基础,提取低层特征进行判断,在获得高正检率的同时也导致了大量的误检。为此,本文的方法从获得更直观和高层的语义知识着手,首先检测图像中局部形态变化突出的位置,并建立关于该区域形态的SIFT描述向量。把这些描述向量抽象地看作视觉“单词”,并收集淫秽图像中常见的单词。依据图像中单词出现的情况,来检测是否包含淫秽成分。结合传统检测方法,仅使用简单的Bayes规则判断,在不降低正检率的前提下,使非淫秽图像的误检率得到显著的下降。 Most pornographic image detecting systems are based on the results of skin detection. They extract the low level features in the image and obtain high positive detecting rate and high false positive detecting rate as well. The paper proposes to extract local features to obtain high level semantic knowledge. The system detects the salient points in the image and describes the local regioffs form around the points using SIFT descriptor. Look on these descriptors as visual words, then the pornographic information can be detected based on the words found. Only combining the Bayesian formula with the traditional detecting system, the algorithm takes from the false positive detecting rate remarkably when the true positive rate is kept as before.
出处 《刑事技术》 2007年第2期9-11,共3页 Forensic Science and Technology
基金 国家高技术研究发展计划(863计划)
关键词 淫秽图像 图像识别 SIFT描述子 语义分析 pornographic image image recognition SIFT descriptor semantic analysis
  • 相关文献

参考文献9

  • 1[1]Qingyong Li,Hong Hu,Zhongzhi Shi.Semantic feature extraction using genetic programming in image retrieval.Pattern Recognition,2004[J].ICPR 2004.Proceedings of the 17th international conference on volume 1,23-26 Aug.2004.Page(s):648-651.
  • 2[2]Kokkinos I,Maragos P,Yuille A.Bottom-up & top-down object detection using primal sketch features and graphical models[J].Computer vision and pattern recognition,2006 IEEE computer society conference on volume 2,2006.Page(s):1893-1900.
  • 3[3]Lowe D G.Distinctive image features from scale-Invariant keypoints[J].IJCV,2004.60(2):91-110.
  • 4[4]P Viola,M Jones,"Rapid object detection using a boosted cascade of simple features",Conf[J].Computer vision and pattern recognition,2001,pp.511-518.
  • 5[5]Mikolajczyk K,Schmid C.A performance evaluation of local descriptors.Pattern analysis and machine intelligence,IEEE transactions on volume 27,Issue 10,Oct.2005.Page(s):1615-1630.
  • 6[6]Epshtein B,Ullman S.Identifying semantically equivalent object fragments.Computer vision and pattern recognition,2005.CVPR 2005[J].IEEE Computer society conference on volume 1,20-25 June 2005.Page(s):2-9.
  • 7[7]Wei Zeng,Wen Gao,Tao Zhang,Yang Liu.Image guarder:An intelligent detector for adult images.Asian conference on computer vision[J].ACCV2004,Jeju island,korea,Jan.27-30,2004,pp198-203.
  • 8[8]C Dance J Willamowski,L Fan,C Bray and G Csurka.Visual categorization with bags of keypoints[M].In ECCV international workshop on statistical learning in computer vision,2004.
  • 9[9]Y Wang,W Wang,W Gao.Research on the discrimination of pornographic and bikini images[J].Proceedings of the seventh IEEE international Symposium on Multimedia (ISM'05).558-564,2005.

同被引文献33

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部