期刊文献+

基于模糊算法的多聚焦图像融合效果评价研究 被引量:5

Multi-Focus Image Fusion Effect Evaluation Based on Fuzzy Algorithm
在线阅读 下载PDF
导出
摘要 针对多聚焦图像的融合效果评价问题,提出了一种基于模糊理论的图像融合效果评价方法.该方法采用融合图像熵值、交互信息量值、平均梯度值、偏差值构成单因素评价指标集,引入基于专家评判法的人的知识确定隶属度函数,用对比排序法综合各个单因素指标得到综合评价指标,其计算简单,评价结果更为全面客观.将该方法应用于多聚焦图像的融合试验,评价结果与理论分析和人的目视效果一致,从而证明了该评价方法的有效性. In view of the multi-focus image fusion effect evaluation problem, the effect evaluation method based on fuzzy algorithm is proposed. This method uses the fusion image entropy value, the interactive information magnitude, the average gradient value, and the deviation amount to form a set of single-factor evaluation measure. Then,we introduce human knowledge based on experts' judgment method into defining membership functions. We obtained a synthetic evaluation factor by synthesizing single factors with con- trast-queue-method. This method is easily be counted. Its appraisal result is more comprehensive and objective. This method was applied in the multi-focus image fusion experiment, so the appraisal result is consistent with the theoretical analysis and human's visual effect, and proves the validity of the assessment method.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第4期885-888,共4页 Chinese Journal of Sensors and Actuators
关键词 图像融合 多聚焦 模糊算法 评价指标 image fusion multi- focus fuzzy algorithm evaluation factor
  • 相关文献

参考文献8

二级参考文献32

  • 1倪国强.多波段图像融合算法研究及其新发展(Ⅱ)[J].光电子技术与信息,2001,14(6):1-6. 被引量:55
  • 2XYDEAS C S, PETROVIC V. Objective image fusion performance measure[J]. IEEE Electronics Letters, 2000, 36(4): 308-309.
  • 3MUROFUSHI T, SUGENO M. An interpretation of fuzzy measure and the choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2): 201-227.
  • 4LALLIER E, FAROOQ M. A real time pixel-level based image fusion via adaptive weight averaging[A]. Proceedings of the 3rd International Conference on Information Fusion[C]. Canada: Coll. of Canada, 2000. 3-13.
  • 5NIKOLOV S G, BULL D R, CANAGARAIAH C N, et al. Image fusion using a 3-D wavelet transform[A]. Proceedings of the Seventh International Conference on Image Processing and its Applications[C]. Manchester: Bristol Univ., 1999. 235-239.
  • 6BURT P J, KOLCZYNSKI R J. Enhanced image capture through fusion[A]. Proceedings of the IEEE Fourth International Conference on Computer Vision[C]. Berlin: David Sarnoff Res. Center, 1993. 173-182.
  • 7杨伦标.模糊数学原理及应用[M].广东:华南理工大学出版社,1995..
  • 8Xiao G, Jing Z L, Li J X, et al. Analysis of color distortion and improvement for IHS image fusion[A].The Proceedings of 2003 IEEE International Conference on Intelligent Transportation Systems[C]. Shanghai: IEEE, 2003,80-85.
  • 9Park J H, Wikantika K, Tateishi R. Comparison of four different methods to fuse multi-sensor and multi-resolution remotely sensed data for urban topographic mapping[A]. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 99'Proceeding [C]. Hamburg, Germany: IEEE, 1999.1203-1205.
  • 10Wang D, Keller S M, Carson C A, et al. Use of fuzzy-logic-inspired features to improve bacterial recognition through classifier fusion [J]. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 1998, 28(4): 583-591.

共引文献47

同被引文献34

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部