期刊文献+

基于灰度空间特征的模糊C均值聚类图像分割 被引量:27

Fuzzy c-means clustering based on gray and spatial feature for image segmentation
在线阅读 下载PDF
导出
摘要 模糊C均值(FCM)聚类算法广泛用于图像的自动分割,但是该算法没有考虑像素的灰度和空间特征,对噪声十分敏感。因此提出一种改进的算法,在传统的FCM聚类的基础上,运用邻域像素的灰度相似度和聚类分布统计来构造新的隶属函数,对图像进行聚类分割。该方法不仅有效地抑制了噪声的干扰,而且把错分类的像素很容易的纠正过来。对两种类型的含噪图像的实验结果表明该方法对噪声具有很强的鲁棒性和对像素聚类的正确性。 Fuzzy c-means (FCM) clustering algorithm has been widely used in automated image segmentation, However, the conventional FCM algorithm is sensitive to noise because of taking no into account the gray and spatial information. An improved algorithm based on the preliminary image segmentation with the FCM cluster is proposed. The degree of gray similarity and cluster distribution statistics of the neighbor pixels are used to form a new membership function, It is not only effective to constrain the noise, but also ease to correct the misclassified pixels. Experimental results on two types of noisy images indicate that the segmentations are more accurate and robust than the standard FCM algorithm.
作者 李云松 李明
出处 《计算机工程与设计》 CSCD 北大核心 2007年第6期1358-1360,1363,共4页 Computer Engineering and Design
基金 甘肃省自然科学基金项目(3ZS042-B25-007)
关键词 模糊C均值 灰度相似性 邻域空间特征 图像分割 鲁棒性 fuzzy c-means gray similarity neighbor spatial feature image segmentation robust
  • 相关文献

参考文献10

  • 1Rafael C Gonzalez,Richard E Woods.Digital image processing[M].Second Edition.Beijing,China:House of Electronics Industry,2002.
  • 2Pham DL.Fuzzy clustering with spatial constraints[J].Proceedings of the IEEE International Conference on Image Processing,2002,(6):456-473.
  • 3Wang X,Wang Y,Wang L.Improving fuzzy c-means clustering based on feature-weight learning[J].Pattern Recognit Lett,2004,25:1123-1132.
  • 4Zhang D Q,Chen S C,Pan Z S.Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation[J].Proc International Conference on Machine learning and Cybernetics,2003,(4):2189-2192.
  • 5Yang MS,Hu YJ,Lin KCR.Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms[J].Magn Reson Imaging,2002,20:173-179.
  • 6Ahmed MN,Yamany SM,Mohamed N.A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Trans on Medical Imaging,2002,21(3):193-199.
  • 7Giolami M.Mercer kernel-based clustering in feature space[J].IEEE Trans Neural Networks,2002,13(3):780-786.
  • 8Zhang Dao-Qiang,Chen Song-Can.A novel kernelized fuzzy C-means algorithm with application in medical image segmentation[J].Artificial intelligence in Medicine,2004,32:37-50.
  • 9Chen Weijie,MSc Maryellen L.A fuzzy C-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images[J].Academic Radiology,2006,13(1):63-72.
  • 10Muneeswaran K,Ganesan L,Arumugam S.Texture image segmentation using combined features from spatial and spectral distribution[J].Pattern Recoglett,2006,27:755-764.

同被引文献194

引证文献27

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部