期刊文献+

基于矢量基学习的最小二乘支持向量机建模 被引量:21

Modeling method of least squares support vector regression based on vector base learning
在线阅读 下载PDF
导出
摘要 为使最小二乘支持向量机的解具有稀疏性,本文提出了一种稀疏解算法-矢量基学习.首先引入基矢量、基矢量集与矢量空间的概念,并分析新样本矢量与矢量空间的夹角,从而推导出该样本是否为基矢量的判断准则.随着新样本的到来,在线判别支持向量,使LS-SVM的支持向量具有稀疏性.提升LS-SVM动态建模的实时性,本文进一步提出用于矢量基学习的增长记忆模式递推公式.仿真分析及水处理厂的应用实例,验证了该方法的可行性和有效性. To achieve a sparse solution for least squares support vector regression (LS-SVM), an algorithm called vector base learning (VBL) is proposed in this paper. Firstly, the concepts of base vector (BV), base vector set (BVS) and vector space are introduced. By calculating the angle between the new sample vector and the vector space, the criteria for determining whether the measurement vector is one of the BVS is then derived. This determination is carried out on-line for the coming new samples. This makes the solutions of LS-SVM having the feature of sparsity. To improve the modeling speed of LS-SVM, a recursive algorithm of increased memory mode for VBL algorithm is also proposed. Finally, simulation analysis and the modeling of a typical plant for water treatment clearly illustrated the validity and feasibility of the presented method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第1期1-5,共5页 Control Theory & Applications
基金 国家"863"计划资助项目(2003AA412110)
关键词 最小二乘支持向量机 矢量基 稀疏性 增长记忆模式 支持向量 least square support vector machine vector base sparsity increased memory mode support vector
  • 相关文献

参考文献6

  • 1VAPNIK V N.The Nature of Statistical Learning[M].Berlin:Springer,1995.
  • 2SUYKENS J A K,VANDEWALE J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293 -300.
  • 3SUYKENS J A K,de BRABANTER J,LUKAS L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002,48(1):85-105.
  • 4JOZSEF V,GABOR H.A sparse least squares support vector machine classifier[C]//Proc of 2004 IEEE Int Joint Conf on Neural Networks.[S.1.]:[s.n.],2004,1:25-29.
  • 5de KRUIF B J,DE VRIES T J A.Pruning error minimization in least squares support vector machines[J].Neural Networks,2003,14(3):696-702.
  • 6COWEN C C.Linear Algebra for Engineering and Science[M].West Lafayette,Indiana:West Pickle Press,1996.

同被引文献218

引证文献21

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部