期刊文献+

支持向量机改进序列最小优化学习算法 被引量:10

Improved SMO learning method of support vector machine
在线阅读 下载PDF
导出
摘要 为提高支持向量机序列最小优化学习算法的学习性能,提出了一种支持向量机改进序列最小优化学习算法,对传统SMO学习方法进行了多方面改进,从优化变量的选择和2个变量的优化方法分别提出具体可行的改进方法.改进后的SMO学习算法提高了学习速度,加快了网络收敛速度.基于改进SMO算法的仿真结果验证了改进SMO算法的有效性和优越性,并通过仿真,与原始算法进行了比较,显示了改进SMO算法的快速性. In order to improve SMO learning algorithm, an improved learning algorithm of Support Vector Machine is proposed,and many respects of traditional SMO learning algorithm are improved. Practical improvement methods are proposed in details respectively in respects of optimal variable selection and twovaribk optimizing. The improved SMO learning algorithm quickened the learning speed of the algorithm and the convergence speed of the network. The simulation result based on improved SMO algorithm proves the validity and superiority of the improwed SMO algorithm. And the comparisons made between the improved SMO method and original SMO method, which showed the efficiency of the improved SMO algorithm.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第2期183-188,共6页 Journal of Harbin Engineering University
关键词 支持向量机 序列最小优化 改进学习算法 回归问题 support vector machine SMO improved learning algorithm regression.
  • 相关文献

参考文献10

二级参考文献32

  • 1[1]Vapnik VN. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Cherkassky V, Mulier F. Learning from Data-Concepts, Theory and Methods. New York: John Wiley Sons, 1998.
  • 3[3]Joachims T. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the European Conference on Machine Learning (ECML). Berlin: Springer-Verlag, 1998. 37~142.
  • 4[4]Weston GJ, Barnhill S. Gene selection for cancer classification using support vector machines. Machine Learning, 2002,46(1-3): 389~422.
  • 5[5]Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods: Support Vector Machines. Cambridge: MIT Press, 1998. 185~208.
  • 6[6]Smola AJ. Learning with kernels [Ph.D. Thesis]. University of Birlinghoven, 1998.
  • 7[7]Smola AJ, Scholkopf B. A tutorial on support vector regression. Technical Report, TR 1998-030. London: Royal Holloway College, 1998.
  • 8[8]Shevade SK, Keerthi SS, Bhattacharyya C. Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 2000,11(5):1188~1194.
  • 9[9]Flake GW, Lawrence S. Efficient SVM regression training with SMO. Machine Learning Special Issue on SVMs, 2000,46(1~3): 271~290.
  • 10[10]Martin M. On-Line support vector machines for function approximation. Technical Report, LSI-02-11-R. Catalunya: Department of Software, Universitat Politecnica de Catalunya, 2002.

共引文献77

同被引文献108

引证文献10

二级引证文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部