期刊文献+

金融市场组合风险的相关性研究 被引量:34

Research on the Correlation of Portfolio Value at Risk in Financial Markets
原文传递
导出
摘要 研究了上海、深圳两股票市场的相关模式.文章根据Copula函数的意义和广义帕累托分布(Generalized Pareto Distribution,GPD),建立了上海、深圳股票市场组合风险的相关结构模型.用GPD和Copula函数分别刻画了上海、深圳股票市场收益率序列的边缘分布以及变量间的相关信息.在此基础上构造了比较灵活的Copula-GARCH-GPD模型.实证研究表明沪深股市的相关模型为Clayton-GARCH-GPD.进一步用蒙特卡洛方法模拟的投资于两股票市场的组合风险表明,联合正态分布模型所得到的组合风险VaR明显地低于用Copula拟合的结果;在较高的置信水平下,Clayton Copula显示的结果更加安全. Research on the correlation between Shanghai and Shenzhen stock markets. By means of copula function and generalized Pareto distribution, we discussed the dependence structure of Shanghai and Shenzhen stock markets. The copula function can capture the correlation between random variables and GPD described the marginal distribution. So the Copula-GARCH-GPD model is established and used to study the financial market. The empirical results show that the dependence pattern of the two stock markets is Clayton-GARCH-GPD distribution. Moreover, the results presented through Monte Carlo Simulation told that the portfolio VaR under normal joint distribution is lower than under other Copulas. And the Clayton Copula gives secure conclusion at high level quantiles.
机构地区 天津大学理学院
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第2期112-117,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70573077) 河北省科技厅软科学研究项目(06457225)
关键词 COPULA函数 广义帕累托分布 相关结构 风险价值 Copula function generalized Pareto distribution dependence structure VaR
  • 相关文献

参考文献11

二级参考文献39

  • 1史道济,姚庆祝.改进Copula对数据拟合的方法[J].系统工程理论与实践,2004,24(4):49-55. 被引量:35
  • 2[1]Nelsen, R. B (1998), An Introduction to Copulas, Lectures Notes in Statistics, 139,Springer Verlag, New York.
  • 3[2]Embrechts, P., Lindskog, F. And McNeil, A. (2001), Modelling Dependence with Copulas and Applications to Risk Management. Dept. of Math. CH-8092, Zürich, Switzerland.
  • 4[3]Bouyé, E. (2000), Copulas for Finance, A Reading Guide and Some Applications. City University Business School,London.
  • 5[1]Anthony W Ledford, Jonathan Tawn. Statistics for near independence in multivariate extreme value[J]. Biometrika, 1996, 83(1):169-187.
  • 6[2]Anthony W Ledford, Jonathan Tawan. Modelling dependance within joint tail regions[J]. J R Statist Soc B, 1997, 59(2):475-499.
  • 7[3]Roger B Nelsen. An Introduction to Copulas[M]. New York: Springer, 1998.
  • 8[4]Hutchinson T P, Lai C D. Continuous Bivariate Distributions, Emphasising Applications[M]. Rumsby Scientific Publishing, Adelaide, 1990.
  • 9[5]Joe, H. Multivariate Models and Dependence Concepts[M].Chapman and Hall, London,1997.
  • 10[6]Sibuya M.Bivarinate extreeme statistics[J].Inst Statist Math,1960,11:195-210.

共引文献416

同被引文献416

引证文献34

二级引证文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部