期刊文献+

一种适用于R-S不等保护码的编译码算法

Error-correcting coding algorithm for R-SUEP codes
在线阅读 下载PDF
导出
摘要 以R-S不等保护码为研究对象,在分析码空间特性的基础上,着重研究编译码算法。编码时,利用分离最小理想的方法构造出信息元距离的不均匀性。译码时,如果接收码字中错误码元的数目小于或等于码空间的最低保护能力,则利用一般译码算法译码;否则对高保护等级信息元的值进行假设,并利用低保护等级的子空间验证该假设,用试探法找到满足验证条件的高保护等级信息元的值。仿真显示,该编译码算法对R-S不等保护码是有效的,它可以在不改变编码效率的前提下为高保护等级的信息元提供更好的误码性能。 This paper studied the coding algorithms for the R-S UEP codes based on the algebraic characteristics of the code space.It formed the unequal distances of the information digits by separating the minimum ideal when coding.And when decoding,if the quantity of the errors in a received codeword was less than or equal to the minimum error protection capability,the general decoding algorithm was used,otherwise the decoder supposed the information digits whose error protection capabilities were high and verified the hypothesis by the code spaces whose error protection capabilities were low.By this means those important information could be found.Simulation showed that this algorithm was effective for the R-S UEP code,and it provided more error protection capabilities for the important information.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第7期6-9,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2004AA505560)
关键词 纠错码 R—S不等保护码 译码算法 error-correcting code R-S UEP code decoding algorithm
  • 相关文献

参考文献8

  • 1Masnick B,Wolf J.On linear unequal error protection codes[J].IEEE Transactions on Information Theory,1967,IT-3 (4):600-607.
  • 2van Gils W J.Two topics on linear unequal error protection codes:bounds on their length and cyclic code classes[J].IEEE Transactions on Information Theory,1983,IT-29(6):866-876.
  • 3杨劲松.线性不等保护能力码理论和方法的研究.北京:北方交通大学,1992.
  • 4Namba K,Fujiwara E.Unequal error protection codes with two-level burst and bit error correcting capabilities[C]//Proceedings of the2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems(DFT'01),2001:463-471.
  • 5Ozbudak F,Stichtenoth H.Constructing linear unequal error protection codes from algebraic curves[J].IEEE Transactions on Information Theory,2003,49(6):1523-1527.
  • 6Lin Mao-chao,Lin Chi-chang,Lin Shu.Computer search for binary cyclic UEP codes of odd length up to 65[J].IEEE Transactions on Information Theory,1990,36(4):924-935.
  • 7Stevens P.Extension of the BCH decoding algorithm to decode binary yclic codes up to their maximum error correction capacities[J].IEEE Transactions on Information Theory,1988,34(5):1332-1340.
  • 8Dunning L A,Robbins W E.Optimum encoding of linear block codes for unequal error protection[J].Inform Contr,1978,37:150-177.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部