摘要
为了准确预测三维四步(1×1)编织复合材料的宏观弹性常数,提出了一种考虑纤维束三维几何结构和纤维束与基体相互作用、便于有限元网格划分的单胞几何模型,该模型精确地反映了纤维体积比。以该几何模型为基础,用六面体单元分别对纤维束和基体进行了网格划分,满足了纤维束与基体界面间的位移连续条件。采用有限元模型计算了编织复合材料的宏观弹性常数,与其他计算结果和实验结果的比较表明,该几何模型和有限元模型比较合理。
In order to predict the macroscopic elastic constants of 3D braided composites accurately, first, a unit cell geometric model is presented. In this model the 3D geometric structure of the yarn is considered in detail and the corresponding finite element model can be built easily. Then the yarn and matrix are meshed using solid hexahedral elements respectively. So there is only one material in one element and this finite element model can reflect the fiber volume fraction exactly, moreover, it satisfies the displacement continuous conditions of the yarn/matrix interface. Finally, the macroscopic elastic constants are obtained using this finite element model. The comparisons of the results with those of other methods and experiments show that the model of this paper is more reasonable.
出处
《航空学报》
EI
CAS
CSCD
北大核心
2007年第1期130-134,共5页
Acta Aeronautica et Astronautica Sinica
基金
国家自然科学基金(19932030)
关键词
三维编织复合材料
单胞
几何模型
有限元模型
宏观弹性常数
3D braided composites, unit cell, geometric model
finite element model
macroscopic elastic constant