期刊文献+

一类具有偏差变元高阶边值问题的正解

在线阅读 下载PDF
导出
摘要 基于Krasnosel’skii不动点定理考虑了一类具有偏差变元的四阶边值问题u″″(t)=f(t,u(t),u(σ(t))),0≤t≤T,u(0)=u′(0)=u″(T)=u(T)=0,正解的存在性。通过估计解的界,获得了上述边值问题分别存在和不存在正解的几组充分条件。最后给出例子说明了主要结果的可行性。
出处 《湘潭师范学院学报(自然科学版)》 2007年第1期5-7,共3页 Journal of Xiangtan Normal University (Natural Science Edition)
  • 相关文献

参考文献9

  • 1Ma R.Multiple positive solutions for a semipositone fourth-order bounadry value problem[J].Hiroshima Math J,2003,33:217 -227.
  • 2Liu Y,Ge W.Solvability of two-point boundary value problems for fourth-order nonlinear diferential equations at resonance[J].Z Anal Anwendungen,2003,22(4):977-989.
  • 3Yao Q.Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J].Appl Math Lett,2004,17:237-243.
  • 4Agarwal R,Chow Y.Iterative methods for a fourth order boundary value problem[J].J Comput Appl Math,1984,10:203-217.
  • 5Henderson J,Yin W.Singular (k; n-k) boundary value problems between conjugate and right focal,Positive solutions of nonlinear problems[J].J Comput Appl Math,1998,88(1):57-69.
  • 6Bai Z,Huang B,Ge W.The iterative solutions for some fourth-order p-Laplace equation boundary value problems[J].Appl Math Letters,2006,19:8-14.
  • 7Yang B.Positive solutions for a fourth-order boundary value problem[J].Electronic J Qual Theory Diff Equa,2005,13:1-17.
  • 8Eva Kovderoca.On the number of solutions of a fourth-order boundary value problem[J].Nonlinear Anal,2000,41:117-131.
  • 9Cui Y,Zou Y.Positive solutions of singular fourth-order boundary-value problems[J].Electronic J Diff Equa,2006,39:1-10.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部