期刊文献+

基于混合微分演化算法的配电网架结构智能规划 被引量:17

An Intelligent Distribution Network Planning Method Based on Geographical Differential Evolution
在线阅读 下载PDF
导出
摘要 应用地理信息系统(GIS)和改进的微分演化(DE)算法组成混合微分演化(GDE)算法来进行配电网架结构的智能规划。该算法首先利用配电网络的地理特征,分阶段过滤明显不适合的线路,得到初步规划网络,随后利用DE算法收敛快速、鲁棒性强的特点,将其应用到优化计算中。为避免早熟,对传统DE算法进行了改进,利用解群转移策略在给定的条件下对解群进行分散处理,以跳出局部最优点,得到全局最优解。并给出了某省会城市的城区高压配电网规划算例。 Distribution network planning is a multi-goal multi-phase and multi-restriction problem that involves the geographical condition of power line route,construction and maintenance expenses,power line losses,power flow and security constraint.A model is proposed to minimize the work of planner while simplifying the network planning procedure.The geographical feature is carefully considered to minimize the optimal search scope and improve the efficiency.An improved differential evolution(DE)is used also in optimal calculation.The DE is far more efficient and robust compared to PSO and GA.The DE is improved to prevent the results from becoming locally optimized by adopting the probability distribution feature and regenerating a diverse population of individuals.The application of the method in a provincial capital power network shows that the optimal speed and robustness can be improved by adopting the improved DE and geographical feature pretreatment.
作者 刘军 刘自发 黄伟 于晗 张建华 LIU Jun;LH Zifa;HUANG Wei;YU Han;ZHANG Jianhua(Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control of Ministry of Education North China Electric Power University,Beijing 102206,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2007年第2期32-35,共4页 Automation of Electric Power Systems
关键词 网架规划 地理信息系统 智能算法 微分演化算法 network planning GIS intelligent method differential evolution
  • 相关文献

参考文献9

二级参考文献57

  • 1王成山,王赛一.基于空间GIS和Tabu搜索技术的城市中压配电网络规划[J].电网技术,2004,28(14):68-73. 被引量:45
  • 2徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 3岑文辉,雷友坤,谢恒.应用人工神经网与遗传算法进行短期负荷预测[J].电力系统自动化,1997,21(3):29-32. 被引量:23
  • 4[1]Lakervi E, Nurmi M. Present Status in Applying Mathematical Planning Methods in AM/FM-GIS System. In: IEE Conference Publication No 438 International Conference on Electricity Distribution-CIRED. Birmingham(UK): 1997. 2~5
  • 5[2]Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading (Mass): Addison-Wesley Pub Co, 1989
  • 6[3]Thomas Ba¨ck, Hans-Paul Schwefel. An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation, 1993, 1(1): 1~23
  • 7[4]Ramirez-Rosado I J, Bernal-Agustin J L.Genetic Algorithms Applied to the Design of Large Power Distribution Systems.IEEE Trans on Power Systems, 1998, 13(2): 696~703
  • 8[5]Miranda V, Ranito J V, Proena L M. Genetic Algorithms in Optimal Multistage Distribution Network Planning. IEEE Trans on Power Systems, 1994, 9(4): 1927~1933
  • 9[6]Vincent Regis, Horling Bryan, Lesser Victor. Experiences in Simulating Multi-agent Systems Using TAEMS. In: The Fourth International Conference on Multi-agent Systems (ICMAS 2000). 2000
  • 10[7]Pierre Dillenbourg, John A Self. A Computational Approach to Socially Distributed Cognition. European Journal of Psychology of Education, 1992, 7(4): 252~373

共引文献192

同被引文献215

引证文献17

二级引证文献223

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部