期刊文献+

离子液体中CuO纳米棒的制备与结构表征 被引量:9

Preparation of CuO Nanorods in Ionic Liquid and Structure Characterization
在线阅读 下载PDF
导出
摘要 以离子液体1-丁基-3-甲基咪唑氯([bmim]Cl)为介质,以Cu(CH3COO)2·2H2O和NaOH为原料,采用溶剂热反应法,制备了一维CuO纳米棒。用XRD、FESEM和TEM/SAED对产物进行了结构和形貌表征,结果表明:经140℃恒温反应20h,可制备出CuO纳米棒,其长度约为70~100nm,直径约为15~20nm,两端为半球型;离子液体作为软模板剂,引导纳米晶体沿[010]方向生长。FTIR和TG分析表明:离子液体修饰在CuO纳米棒的表面,从而有效地阻止了CuO纳米棒的团聚。应用紫外一可见吸收光谱估测CuO纳米棒的带隙能量为2.64eV。离子液体在反应中发挥了助溶剂、模板剂和修饰剂的三重作用。 The 1 -D CuO nanorods were prepared by solvothermal reaction using Cu( CH3COO)2· 2H2O and NaOH as raw materials and the mixture of ionic liquid 1-butyl-3-methylimidazolium chloride ( [ bmim ] CI) and water as solvent. The morphology and structure of CuO nanorods were characterized by XRD, FESEM and TEM/SAED. It is found that the CuO nanorods, prepared at constant temperature of 140 ℃ for 20 h,are 70- 100 nm in length,15 -20 nm in diameters and hemisphere at each end. Ionic liquid plays the role of a soft-template which lead the nanocrystals to grow along [010] direction to form nanorods. The FTIR and TG results indicated that the surface of the CuO nanorods is modified with the ionic liquid to prevent nanorods from possible crystallite aggregation. UV - Vis spectra were employed to estimate the band gap energies of CuO nanorods ( about 2.64 eV). The ionic liquid acts as cosolvent, template agent and modifier at the same time.
出处 《精细化工》 EI CAS CSCD 北大核心 2007年第2期129-132,共4页 Fine Chemicals
基金 教育部博士学科点专项基金(No.20050217019) 哈尔滨工程大学基础研究基金(No.HEUFT05018)
关键词 离子液体 CuO纳米棒 溶剂热反应 ionic liquid CuO nanorods solvothermal reaction
  • 相关文献

参考文献15

  • 1Lu C H,Qi L M,Yang J H,et al.Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures[J].Crystal Growth & Design,2006,6(7):1690-1696.
  • 2Gao X P,Bao J L,Pan G L,et al.Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery[J].J.Phys.Chem.B,2004,108:5547-5551.
  • 3Prabhakaran D,Subramanian C,Balak umar S,et al.Morphology and etching studies on YBCO and CuO single-crystals[J].Physica C,1999:99-103.
  • 4John B R,Edward I S.Propylene oxidation on copper oxide surfaces:electronic and geometric contributions to reactivity and selectivity[J].J Am Chem Soc,1998,120:11467-11478.
  • 5Zou G F,Li H,Zhang D W,et al.Well-aligned arrays of CuO nano platelets[J].J Phys Chem.B,2006,110:1632-1637.
  • 6Zhang Y G,Wang S T,Li X B,et al.CuO shuttle-likenanocrystals synthesized by oriented attachment[J].Journal of Crystal Growth,2006:196-201.
  • 7Liu Q,Liu H J,Liang Y Y,et al.Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process[J].Materials Research Bulletin,2006,41:697-702.
  • 8张普玉,娄帅,金邻豫,李文斌.离子液体应用研究进展[J].精细化工,2005,22(5):324-327. 被引量:46
  • 9Zhu Y J,Wang W W,Qi R J,et al.Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids[J].Angew Chem Int Ed,2004,43:1410-1414.
  • 10Wang W W,Zhu Y J,Cheng G F,et al.Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers[J].Materials Letters,2006,60:609-612.

二级参考文献46

  • 1Shi J H, Sun X, Yang Ch H. The evolvement of ionic liquid[J]. Chemistry Aviso, 2002, 4:243-251.
  • 2Gu Y L, Deng Y Q. The study and application of the room temperature ionic liquid in catalysis of petrochemistry[J].Journal of Petrochemical Technology & Application, 2002, 20(2) : 73 78.
  • 3Welton T. Room-temperature ionic liquid solvent for synthesis and catalysis[J]. Chem Rev, 1999, 99:2071-2083.
  • 4Olvier H. Recent development in the use of non-aqueous ionic liquid for two-phase catalysis[J], J Mol Catal, 1999,146(1-2) : 285-289.
  • 5Earle M J, Seddon K R. Ionic liquid green solvent for the future[J]. Pure Appl Chem, 2000, 72(7): 1391-1398.
  • 6Dymek J C J,Grossie D A,Fratini A V, et al. Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor 1-methyl-3-ethyl imidazolium chloride[J]. Journal of Molecular Structure,1989, 213:25-34.
  • 7Del-Popolo M G, Voth G A. On the structure and dynamics of ionic liquids[J]. J Phys Chem B, 2004, 108(5):1744-1752.
  • 8Kollle P, Dronskowski R. Hydrogen bonding in the crystal structures of the ionic liquid compounds butyldimethylimidazolium hydrogen sulfate, chloride, and chloroferrate (Ⅱ, Ⅲ) [J]. Inorg Chem, 2004, 43 (9) : 2803 2809.
  • 9Thomazeau C C , Olivier-Bourbigou H L, Magna L, et al. Determination of an acidic scale in room temperature ionic liquids[J]. J Am Chem Soc, 2003,125(18): 5254-5265.
  • 10Deschamps J, Padua A A H, Canongia L J N. Modeling ionic liquids using a systematic all-atom force field[J]. J Phys Chem B, 2004, 108(6): 2038-2047.

共引文献52

同被引文献123

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部