期刊文献+

一种改进的基于关系矩阵的关联规则快速挖掘算法

An Improved Fast Algorithm for Mining Association Rules Based on Relationship Matrix
在线阅读 下载PDF
导出
摘要 关联规则的开采是数据挖掘中的一个重要问题,其核心是频繁模式挖掘。频繁模式挖掘算法的高效率性近年来是许多学者研究的方向。首先对关联规则挖掘问题进行了描述,其次对一种基于项目可辨识向量及其“与”运算设计的频繁项集快速挖掘算法SLIG进行了分析,最后利用二元关系矩阵及其项之间的二元关系数目,缩减候选频繁k项集的产生,提出了改进算法SLIG*,提高了SLIG算法的效率。 After introduction of the problem of mining association rules, an efficient algorithm SLIG(Single - levellarge Itemsets Generation) based on relation theory and "AND" operation on recognizable vectors is analyzed. Finally, we propose SLIG" ,which reduced the number of the candidate frequent k - itemsets by recording the number of the binary relations in the matrix, Empirical evaluation and experiments show that SLIG is more efficient than SLIG.
出处 《现代电子技术》 2007年第3期114-116,120,共4页 Modern Electronics Technique
关键词 关联规则 频繁项 二元关系矩阵 数据挖掘 association rule frequent itemset binary relation matrix data mining
  • 相关文献

参考文献10

  • 1Agrawal R,Imielinski T,Swami A.Mining Association Rules between Sets of Items in Large Database[A].Proceedings of the 1993 ACM-SIGMOD International Conference on Management of Data[C].Washington DC,USA,1993:207-216.
  • 2Agrawal R,Srikant R.Fast Algorithm for Mining Association rules[A].In:Proceedings of the 20th International Conference on VLDB[C].Santiago,Chile:1994:487-499.
  • 3Park J S,Chen M S,Yu P S.An Effective Hash-based Algorithm for Mining Association Rules.In Pro.1995 ACM-SIGMOD Int.Conf.Management of Data(SIGMOD'95),1995:175-186.
  • 4Savasere A,Omiecicinski E,Navathe S.An Efficient Algorithm for Mining Association Rules in Large Database.In Proc.1995 Int.Conf.Very Large Data Bases(VLDB'95),1995:432-443.
  • 5Toivonen H.Sampling Large Databases for Association Rules.In Proc.1996 Int.conf.Very Large Data Bases(VLDB'96),1996:134-145.
  • 6Brin S,Motwani R,Ullman J D,et al.Dynamic Itemset Counting and Implication Rules for Market Basket Analysis.In Pro.1997 ACM-SIGMOD Int.Conf.Management of Data(SIGMOD'97),1997:255-264.
  • 7HANJ KAMBERM.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 8胡慧蓉,王周敬.一种基于关系矩阵的关联规则快速挖掘算法[J].计算机应用,2005,25(7):1577-1579. 被引量:21
  • 9邓丰义,刘震宇.基于模式矩阵的FP-growth改进算法[J].厦门大学学报(自然科学版),2005,44(5):629-633. 被引量:17
  • 10钱少华,蔡勇,钱雪忠.基于数组的Apriori算法的改进[J].计算机应用与软件,2006,23(2):111-113. 被引量:16

二级参考文献18

  • 1David Hand,Heikki Mannila,Padhraic.Principles of Data Mining ISBN0-262-08290-X,2001.
  • 2Richard J.Roiger,Michael W.Geatz 著,翁敬弄译.Data Mining A Tutorial-Based Primer,北京:清华大学出版社,2003.
  • 3Park J S,Chen M S,Yu P S.An effective hash-based algorithm for mining association rules[A].In Proc.1995 ACM-SIGMOD Int.Conf.Management of Data[C].San Jose,CA:1995.175-186.
  • 4Toivonen H.Sampling large databases for association rules[A].In Proc.1996 Int.Conf.Very Large Data Bases(VLDB'98)[C].Bombay,India:1996.134-145.
  • 5Han J Kamber.Data Mining:Concepts and Techniques[M].Beijing:Higher Education Press,2001.
  • 6HanJKamber 范明 孟小峰 译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 7Han J,Jian P,Yiwen Y.Mining frequent patterns without candidate generation[A].In:Proceedings of the 2000 ACM SIGMOD International Conference Management of Data[C].Dallas.Texas:2000.1-12.
  • 8Agrawal R,Srikant R.Fast algorithm for mining association rules[A].In:Proceedings of the 20th International Conference on VLDB[C].Santiago,Chile:1994.487-499.
  • 9AGRAWAI, R,IMIEIJNSKI T,SWAMI A.Mining Association Rules between Sets of Items in Large Database[A]. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data[C]. Washington DC, USA, 1993. 207-216.
  • 10AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[A]. Proceedings of the 20th Int'l Conference on Very Large Databases[C]. Santiago, Chile, 1994. 487-499.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部