期刊文献+

空间4R冗余度机械臂容错空间分析 被引量:1

Analysis of Fault Tolerant Workspace of a Spatial 4R Redundant Manipulator
在线阅读 下载PDF
导出
摘要 针对空间4R冗余度机械臂活动关节工作空间进行了定量研究,并且对其容错空间做了进一步探讨。首先推导出空间4R冗余度机械臂不同关节锁定时工作空间的解析表达式,并且根据表达式对工作空间进行了三维造型;然后,进一步分析了机械臂的D-H参数对工作空间的影响;最后,给出3 sigm a型机械臂容错空间的计算方法及三维造型,分析了其容错空间的影响因素。研究结果表明:当机械臂结构参数一定时,一个活动关节(关节2)在一定范围内锁定,工作空间不变,并且此锁定范围与结构参数一一对应;机械臂的臂长之和一定时,各机械臂长度越接近,机械臂的工作空间越大;机械臂关节2偏置的存在使机械臂工作空间不会出现薄壳,另一活动活动关节(关节3)的偏置的存在也可以增大工作空间;关节工作空间增大,容错空间也会相应增大。 The paper carried out the quantitive study of the workspace of a spatial 4R redundant manipulator and explored its fault tolerant workspace. First, the analytical expressions of the workspace when the manipulator's different joints had been locked were derived, whereby the workspace was 3D modeled. Then, the manipulator's D-H parameters' influence on workspace was analyzed. Finally, the calculation method and 3D models for the 3-sigma type of manipulator's fault tolerant workspace were presented, and its influence factors were analyzed. The study results indicate that when the manipulator's structural parameters are given, its workspace is constant if an active joint (Joint 2) is locked within a certain range and if the range corresponds with each structural parameter of the manipulator. For the manipulator with a fixed total of arm length, the smaller the distance between the arm lengths is , the larger its workspace is. The offset of Joint 2 is helpful to avoiding the appearance of the thin shell of its workspace. The offset of Joint 3 can also increase the workspace. As the workspace increases, so does the fault tolerant workspace.
作者 魏珊珊 赵京
出处 《机械科学与技术》 CSCD 北大核心 2006年第12期1391-1394,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 北京市自然科学基金项目(3042005)资助
关键词 空间冗余度机械臂 工作空间 容错空间 spatial 4R redundant manipulator workspace fault tolerant workspace
  • 相关文献

参考文献8

  • 1Visinsky M L,Cavallaro J R,Walker I D.Robotic fault detection and fault tolerance:a survey[J].Rel.Eng.Syst.Safety,1994,46:139~158
  • 2Lewis C L,Maciejewski A A.Fault tolerant operation of kinematically redundant manipulators for locked joint failures[J].IEEE Transactions on Robotics and Automation,1997,13(4):622~629
  • 3Lewis C L,Maciejewski A A.An Example of Failure Tolerant Operation of a Kinematically Redundant Manipulator[M].School of Electrical Engineering.Purdue University.West Lafayette,IN,1994:1380~1387
  • 4Paredis C J J,Au W K,Frederick P K Khosla.Kinematic design of fault tolerant manipulators[J].Comput.Elect.Eng,1994,20(3):211~220
  • 5Lee T W,Yang D C H.On the evaluation of manipulator workspace[J].Journal of Mechanisms,Transmissions,and Automation in Design,1983:105~71
  • 6赵京,缪萍,荆红梅.冗余度机械臂关节运动和末端运动的同步容错规划[J].机械工程学报,2003,39(3):53-57. 被引量:11
  • 7Zhao J,Yao X B,Zhang L.The optimization of initial posture with avoidance of the sudden change in joint velocity for fault tolerant operations of two coordinating redundant manipulators[J].Mechanism and Machine Theory,2005,40(6):659~668
  • 8曹毅,王树新,李群智.基于随机概率的机器人工作空间及其面积求解[J].制造业自动化,2005,27(2):24-29. 被引量:4

二级参考文献13

  • 1[1]Paredis C J J,Frederick Au W K,Khosla P K.Kinematic design of fault tolerant manipulators.Comput.Elect. Eng.,1994,20(3):211~220
  • 2[2]Roberts R G,Maciejewski A A.A local measure of fault tolerance for kinematically redundant manipulators.IEEE Transactions on Robotics and Automation,1996,12(4):543~552
  • 3[3]Paredis C J J,Khosla P K.Fault tolerant task execution through global trajectory planning redundant manipulators. Reliability Engineering and System Safety,1996,13(2):225~235
  • 4[4]Lewis C L,Maciejewski A A.Fault tolerant operation of kinematically redundant manipulators for locked joint failures.IEEE Transactions on Robotics andAutomation,1997,13(4):622~629
  • 5[5]Yoshikava T.Analysis and control of robot manipulators with redundancy.In:Brady M,Paul R eds.Robotics and Research,Proc.of 1st Int.Symp.on Robotics Research,Cambridge,1984,Mass.:MIT Press,1984:735~747
  • 6[6]Liegeois A.Automatic supervisory control of the configuration and behavior of multibody mechanisms.IEEE Transactions on Syst.Man Cybern,1977,7(12):868~871
  • 7理查德·摩雷 李泽湘.机器人操作的数学导论[M].机械工业出版社,1998..
  • 8WANG Y F, CHIRIKJIAN G S. A diffusion-based algorithm for workspace generation of highly articulated manipulators[A]. Proceedings - IEEE International Conference on Robotics and Automation, 2002: 1525-1530.
  • 9DAVID G, CHUNG C D N. Determining manipulator workspace boundaries using the Monte Carlo method and least squares segmentation[A]. ASME Design Engineering Division, 23rd Biennial Mechanisms Conference, 1994:141-146.
  • 10SNYMAN J A, PLESSIS L J. An optimization approach to the determination of the boundaries of manipulator workspace[J].ASME Journal of Mechanical Design, 2000, (122):447-456.

共引文献13

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部