期刊文献+

关于凸体的Lp-曲率映象的不等式

On the Inequalities for L_p - Curvature Image of Convex Bodies
在线阅读 下载PDF
导出
摘要 Lutwak提出了凸体的Lp-曲率映象的概念,并证明了凸体与其Lp-曲率映象的体积之间的一个不等式.本文给出了Lutwak结果的一个一般形式,继而证明了凸体与其Lp-曲率映象的极的体积之间的一个不等式,并得到了凸体的Lp-投影体和Lp-曲率映象的体积之间的一个不等式. Lutwak showed the notion of Lp - curvature image and proved an inequality for the volumes of convex body and its Lp - curvature image. This paper gives a genaral form than Lutwak's result. Further, the authors establish an inequality for the volumes contained convex body and the polar of its Lp -curvature image, and obtain an inequality for the volumes of Lp-projection body and Lp-curvature image.
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第6期829-836,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271071)湖北省教育厅重点科研(No.2003A005)资助的项目.
关键词 凸体 Lp-曲率函数 Lp-曲率映象 LP-投影体 极体 Convex body, Lp-curvature function, Lp-curvature image, Lp-projection body, Polar body.
  • 相关文献

参考文献10

  • 1Firey W.J.,p-means of convex bodies[J],Math Scand,1962,10:17-24.
  • 2Gardner R.J.,Geometric Tomography[M],Cambridge:Cambridge Univ.Press,1995.
  • 3Hardy G.H.,Littlewood J.E.and Pólya G.,Inequalities[M],Cambridge:Cambridge University Press,1959.
  • 4Leichtweiβ K.,Affine Geometry of Convex Bodies[M],Heidelberg:J.A.Barth,1998.
  • 5冷岗松.凸体的曲率映象与仿射表面积[J].数学学报(中文版),2002,45(4):797-802. 被引量:4
  • 6Lutwak E.,On some affine isoperimetric inequalities[J],J.Differ.Geom.,1986,56:1-13.
  • 7Lutwak E.,The Brunn-Minkowski-Firey theory Ⅰ:mixed volumes and the minkowski problem[J],J.Differ.Geom.,1993,38:131-150.
  • 8Lutwak E.,The Brunn-Minkowski-Firey theory Ⅱ:Affine and Geominimal Surface Areas[J],Adv.Math.,1996,118:244-294.
  • 9Lutwak E.,Yang D.and Zhang G.Y.,Lp affine isoperimetric inequalities[J],J.Differ.Geom.,2000,56:111-132.
  • 10Petty C.M.,Affine isoperimetric problems[J],Ann.N.Y.Acad.Sci.,1985,440:113-127.

二级参考文献15

  • 1Alexander R., Zonoid theory and Hilbert's fourth problem, Geom. Dedicata, 1988, 28: 199-211.
  • 2Ball K. M., Shadows of convex bodies, Trans. Amer. Math. Soc., 1991, 327: 891-901.
  • 3Bourgain J., Milman V., New volume ratio properties for convex symmetric bodies in Rn, Ivent. Math., 1987,88: 319-340.
  • 4Brannen N. S., Volumes of projection bodies, Mathematika, 1996, 43: 255-264.
  • 5Gordon Y., Meyer M., Reiser S., Zonoids with minimal volume product-a new proof, Proc. Amer. Math.Soc., 1988, 104: 273-276.
  • 6Guggenheimer H., Applicable Geometry, Geometry, Global and Local Convexity, R. E. Krieger, Huntington,NY 1997.
  • 7Kaiser M. J., The lower bound for the volume product Vn(K)Vn(K*), Appl. Math. Lett., 1994, 7: 1-5.
  • 8Lutwak E., On some affine isoperimetricc inequalities, J. Differential Geom., 1986, 23: 1-13.
  • 9Lutwak E., Volume of mixed bodies, Trans. Amer. Math. Soc., 1986, 294: 487-500.
  • 10Lutwak E., Extended affine surface area, Adv. Math., 1991, 85: 39-68.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部