期刊文献+

Segmentation of complex objects’ sonar images using parameter-fixed MRF model

Segmentation of complex objects’ sonar images using parameter-fixed MRF model
在线阅读 下载PDF
导出
摘要 The effective method of the recognition of underwater complex objects in sonar image is to segment sonar image into target, shadow and sea-bottom reverberation regions and then extract the edge of the object. Because of the time-varying and space-varying characters of underwater acoustics environment, the sonar images have poor quality and serious speckle noise, so traditional image segmentation is unable to achieve precise segmentation. In the paper, the image segmentation process based on MRF (Markov random field) model is studied, and a practical method of estimating model parameters is proposed. Through analyzing the impact of chosen model parameters, a sonar imagery segmentation algorithm based on fixed parameters’ MRF model is proposed. Both of the segmentation effect and the low computing load are gained. By applying the algorithm to the synthesized texture image and actual side-scan sonar image, the algorithm can be achieved with precise segmentation result.
出处 《Journal of Marine Science and Application》 2006年第4期42-47,共6页 船舶与海洋工程学报(英文版)
基金 Supported by China Postdoctoral Science Foundation (Grant No. LRB00025), Research Fund for Doctoral Program of Higher Education of China (Grant No. 20050217010) and Foundation under the Underwater Acoustic Technology National Key Lab (Grant No. 9140C200501060C20).
关键词 parameter-fixed M RF model sonar image image segmentation 声呐 参数模型 识别模式 计算机
  • 相关文献

参考文献2

二级参考文献12

  • 1Widrow B. The rubber mask technique. Pattern Recognition.1973: 5(2): 175-211.
  • 2Fischler M, Elschanger R. The representation and matching of pictorial structure. IEEE Trans. Computer, 1973;22(1): 57-92.
  • 3Bimbo A D, Pala P. Visual image retrieval by elastic matching of user sketches. IEEE Trans. Pattern Anal. Mach.Intell., 1997; 19(2): 121-132.
  • 4Jain A K, Zongker D. Representation and recognition of handwritten digits using deformable templates. IEEE Trans. Pattern Anal. Mach. Intell., 1997; 19(12): 1386-1390.
  • 5Amit Y, Grenandar U, Piccioni M. Structural image restoration through deformable template. Journal American Statistical Assn., 1991; 86(6): 376-378.
  • 6Kass M, Witkin A, Ferzopoulos D. Snakes: active contour model. Pro. First International Conference Computer Vision. 1987; 2(4):259-268.
  • 7Jain A K, Vailaya A. Shape-based retrieval: a case study with trademark image databases. Pattern Recognition,1998; 31(9): 1369-1390.
  • 8Jain A K, Zhong Yu, Lakshmanan S. Object matching using deformable templates.IEEE Trans.Pattern Anal.Mach. Intell, 1996; 18(3): 267-278.
  • 9German S, German D. Stochastic relaxation, Gibbs distributions and the Bayesian estimation of images.IEEE Trans. PAMI, 1984; 6(6): 721-742.
  • 10Gerfled S B, Milter S K. Metropolis-type annealing algorithms for global optimization. Journal of Control and Optimization, 1993; 1(5): 416-429.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部