期刊文献+

小波变换在轴承故障声发射信号降噪中的应用 被引量:2

Application of Wavelet Transform on Accoustic Emission Signal Denoising of Rolling Bearing Faults
在线阅读 下载PDF
导出
摘要 噪声消除是小波变换最成功的应用之一,其基本思想是将信号的小波变换系数通过阈值处理,然后进行小波重构得到降躁的信号。根据故障轴承声发射信号的脉冲特性选取Mor-let小波,以“小波熵最小”原则确定Morlet小波的波形参数,然后进行连续小波变换。采用软阈值方法处理小波系数,通过小波重构得到降噪后的故障声发射信号,噪声得到了很好的抑制,故障脉冲特征明显增强。采用实验数据,通过与离散小波变换的比较,得到了用连续小波变换可以有效降低噪声、提取故障声发射信号特征的结论。 Noise cancellation is one of the most successful applications of the wavelet transform. Its basic idea is to compare wavelet decomposition coefficients with the given thresholds anti only keep those bigger ones and then do wavelet reconstruction with them. In this paper, according to the impulse characteristic of bearing faults aeoustie emission signals, the Morlet wavelet is selected. The shape parameter of Morlet wavelet funetion is optimized based on the principle of minimal entropy. The denoised signals which were reconstructed by the wavelet coefficients fihered by the threshold value clearly showed the deteets characteristic frequency. Compared with the discrete wavelet transform, the continuous Morlet wavelet transform is fit for the denoising of bearing fauhs acoustic emission signals.
出处 《石家庄铁道学院学报》 2006年第4期34-37,51,共5页 Journal of Shijiazhuang Railway Institute
关键词 连续小波变换 噪声消除 滚动轴承 continuous wavelet transform noise cancellation rolling bearing
  • 相关文献

参考文献3

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1992.2.
  • 2Hai Qiu,Jay Lee.Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[ J].Journal of Sound and Vibration,2006,289(1):1 066~1 090
  • 3D Mba,Raj B K N Rao.Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines:bearings,pumps,gearboxes,engines and rotating structures[J].The Shock and Vibration Digest,2006,38 (1):3~16

共引文献9

同被引文献23

  • 1芮挺,王金岩,沈春林,丁健.采用离散余弦变换的小波图像去噪方法[J].光电工程,2005,32(1):51-54. 被引量:9
  • 2姜长泓,王龙山,尤文,翟宁,初明.基于平移不变小波的声发射信号去噪研究[J].仪器仪表学报,2006,27(6):607-610. 被引量:29
  • 3李雪耀,谢华,张汝波.基于离散余弦变换的语音增强[J].哈尔滨工程大学学报,2007,28(2):198-202. 被引量:9
  • 4Pei S C, Yeh M H, The discrete fractional cosine and sine transforms[J], IEEE Trans Signal Proc, 2001, 49(6): 1198-1207.
  • 5Hasan M K, Zlljany M S A, Khan M R. DCT speech enhancement with hard and soft thresholding criteria[J]. Electronic Letters, 2002, 38(13): 669-670.
  • 6Chang Joon-Hyuk, Nam Soo Kim. Speech enhancement using warped discrete cosine transform[C]. IEEE Speech Coding, Tsukuba, Japan, 2002: 175-177.
  • 7Bahoura M, Rouat J. Wavelet speech enhancement based on the teager energy operator[J]. IEEE Signal Processing Letter, 2001,8(1 ): 10-12.
  • 8Namias V. The fractional order fourier transform and its application to quantum mechanics[J]. J. Inst. Math. Applic, 1980, 25(6) : 241-265.
  • 9Shih C C. Fractionalization of fourier transform[J]. Opt. Commun, 1995, 118(7) : 495-498.
  • 10Almeida L B. An introduction to the angular fourier transforms [C]. IEEEAcoustic, Speech, and Signal Processing, Minneapolis, 1993: 27-30.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部