期刊文献+

基于视觉注意计算模型的图像压缩新方法 被引量:2

A New Image Compression Approach Based on Visual Attention Computational Model
在线阅读 下载PDF
导出
摘要 图像可以被分为重要的感兴趣区域和不重要的背景区域。提出了一种新的基于感兴趣区域的图像压缩方法。该方法首先使用一个基于视觉生理和心理物理实验基础的视觉注意计算模型计算图像中的感兴趣区域,然后用JPEG算法对感兴趣区域和背景区域采用不同的压缩比进行压缩。实验结果表明,该算法具有比JPEG算法更高的压缩效率,同时保证了图像良好的视觉效果。 An image can be segmented into the region of interesting(ROI), which is considered important, and the background, which is less important. In this paper, a new ROI based image compression algorithm is proposed. The first step of the algorithm is to find out the ROI in the image. A saliency-based bottom-up visual attention computational model which is motivated by visual physiological and psychophysical experimental results is used. The second step is encoding and which is based on the JPEG algorithm. The ROI of the image is compressed with a low compression ratio and the back ground with a high one. The reconstruction algorithm of the compressed image is like that of the JPEG algorithm. The algorithm proposed has higher compression ratio than JPEG algorithm and the image compressed has a perceptually high quality. We test our algorithm with lots of natural images and satisfy with the result.
出处 《科技通报》 2006年第6期775-780,共6页 Bulletin of Science and Technology
基金 国家自然科学基金项目(30170267)
关键词 视觉注意 感兴趣区域 图像压缩 特征抽取 visual attention region of interesting(ROI) image compression feature extraction
  • 相关文献

参考文献20

  • 1Rafael C Gonzalez,Richard E Woods.Digital Image Processing (2nd Edition)[M].Prentice Hall Inc.,New Jersey,2002.
  • 2http://www.ipeg.org/jpeg2000/[OL],2005.
  • 3Q Tian,Y Wu,T S Huang.Combine User Defined Region-of-Interest and Spatial Layout for Image Retrieval[A].IEEE 2000 International Conference on Image Processing (ICIP 2000)[C].Vancouver,BC,Canada,2000,3:746-749.
  • 4Timor Kadir,Michael Brady.Scale,Saliency and Image Description[J].International Journal of Computer Vision,2001,45(2):83-105.
  • 5Nicu Sebe,Michael S Lew.Comparing salient point detectors[J].Pattern Recognition Letters,2003,24 (1 ~3):89-96.
  • 6Heinrich H Bulthoff,Seong-Whan Lee,Tomaso Poggio,Christian Wallraven.Biologically Motivated Computer Vision[M].Springer Publishing Company,New York,2003.
  • 7Itti L,Koch C.Computational modelling of visual attention[J].Nature Reviews Neuroscience,2001,2:194-202.
  • 8Bundesen C,Habekost T.Attention,In Lamberts,K.,Goldstone,R.(Eds.),Handbook of Cognition[M].Sage Publications,London,2004.
  • 9Koch C,Ullman S.Shifts in selective visual attention:towards the underlying neural circuitry[J].Human Neurobiology,1985,4:219-227.
  • 10Itti L,Koch C,Niebur E.A model of saliency-based visual-attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.

同被引文献21

  • 1张伟,任仙怡,张桂林,张天序.基于对数极坐标变换和仿射变换的目标识别定位方法[J].中国图象图形学报,2006,11(9):1255-1259. 被引量:12
  • 2Reddy B S,Chatterji B N.An fft-based technique for translation,rotation and scale-invariant image registration[J].IEEE Transactions on Image Processing,1996,15(8):1266-1271.
  • 3Tian Q,Wu Y,Huang T S.Combine user defined region-of-interest and spatial layout for image retrieval[C]//IEEE International Conference on Image Processing,2000,3:746-749.
  • 4Kadir T,Brady M.Scale,saliency and image description[J].International Journal of Computer Vision,2001,45(2):83-105.
  • 5Sebe N,Lew M S.Comparing salient point detectors[J].Pattern Recognition Letters,2003,24(1):89-96.
  • 6Lamberts,Koen.Handbook of cognitiun[M].[S.l.]:Sage Publications Ltd,2004.
  • 7Koch C,Ullman S.Shifts in selective visual attention:towards the underlying neural eireuitty[M].[S.l.]:Human Neurobiology,1985:219-227.
  • 8Itti L,Kocli C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):12-54.
  • 9Gottlieb J P,Kusunoki M,Goldberg M E.The representation of visual salience in monkey parietal cortex[J].Nature,1998,39:481-484.
  • 10Arauio H,Dias J MAn introduction to the Log-Polar mapping[C]//IEEE Proceedings of Second Workshop on Cybernetic Vision,1996:139-144.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部