期刊文献+

On Weakly Reducible SD-Splittings of Inner Genus 1

关于内亏格1的弱可约SD-分解(英文)
在线阅读 下载PDF
导出
摘要 Let (M; H1, H2; Fo) be a SD-splitting for bordered 3-manifold M. The splitting is reducible (weakly reducible, respectively) if there exist essential disks D1 belong to H1 and D2 belong to H2 such that δD1,δD2 belong to Fo and δD1 =δD2 (δD1 ∩ δD2 =φ, respectively). A SD-splitting (M; H1, H2; Fo) for bordered 3-manifold M is of inner genus 1 if Fo is a punctured torus. In the present paper, we show that a weakly reducible SD-splitting of inner genus 1 is either reducible or bilongitudional. 设(M;H_1,H_2;F_0)为带边3-流形M的一个SD-分解.称该分解为可约的(或弱可约的)若存在本质圆片D_1■H)_1,D_2■H_2使得■D_1,■D_2■F_0并且■D_1=■D_2(或■D_1∩■D_2=■).称(M;H_1,H_2;F_0)为内亏格1若F_0为穿孔环面.本文主要结果:一个弱可约的内亏格1的SD-分解或是可约的或是双经的.
作者 李阳 雷逢春
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第4期694-698,共5页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China(10571034)
关键词 SD-splitting REDUCIBILITY inner genus SD-分解 可约性 内亏格
  • 相关文献

参考文献6

  • 1DOWNING J S. Decomposing compact 3-manifolds into homcomorphic handlebodies [J]. Proc. Amer. Math.Sot., 1970, 24: 241-244.
  • 2ROELING L G. The genus of an orientable 3-manifold with connected boundary [J]. Illinois J. Math., 1973,17: 558-562.
  • 3SUZUKI S. Handlebody splittings of compact 3-manifolds with boundary [C]. Proceedings of Knot Theory1999 in Toronto.
  • 4LEI Feng-chun, YANG Li. SD-splittings t'or some bordered 3-manifolds [J]. Acta Math. Sinica,1999 in Toronto.
  • 5JACO W. Lectures on Three.-ManifolcTopology [M]. CBMS Regional Conference Series in Mathematies, 43.American Mathematical Society, Providence, R.I., 1980.
  • 6CASSON A J, GORDON C M. Reducing Heegaard splitting [J]. Topology Appl., 1987, 27: 275-283.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部