期刊文献+

砷在金属氧化物/水界面上的吸附机制Ⅱ.电荷分布多位络合模型模拟 被引量:5

Adsorption mechanism of arsenic on metal oxide adsorbent 2. Charge-distribution multisite complexation model
在线阅读 下载PDF
导出
摘要 利用电位滴定表征了铁铈氧化物(Fe-Ce)的表面电荷特性,并使用电荷分布多位络合模型(CDMUSIC)进行了模拟,得到Fe-Ce材料的表面位质子结合常数为5.8,位密度为23.2个·nm^-2。,高于大多数铁氧化物的表面位密度.在Fe-Ce表面特性参数的基础上。进一步使用CD MUSIC模型对系列PH(5—9)下As(V)在Fe-Ce表面的等温吸附实验进行了模拟.结果表明,单齿单核单质子化形态zFeOAsO3H^1.5-和双齿双核非质子化形态=Fe2O2AsO2^2-共存于吸附后的Fe-Ce表面。它们的结合常数分别为31.5和34.2,电荷分布值(力分别为0.25和0.50.使用以上模型参数,对pH3.5-10.5范围内2种表面络合形态分布趋势进行了预测.结果表明,在偏酸性条件下。=FeOAsO3H^1.5-形态占主导;而=Fe2O2AsO2^2-形态主要存在于偏碱性的范围. The adsorption mechanism of arsenic on an Fe-Ce oxide was studied by using the charge-distribution muhisite complexation ( CD MUSIC) model. The fitting results showed that the surface protonation constant is 5.8, and the site density is 23.2 sites nm -2, which was higher than most of the iron oxides. And the isotherms of As(V) adsorption on the Fe-Ce oxide at pH 5 - 9 was then modeled using the CD MUSIC model. The fitting results showed that =FeOAsO3 H^1.5- and =Fe2 O2 AsO2^2- coexisted on the surface of the Fe-Ce oxide, and their surface complexation constants are 31.5 and 34.2, and the CD factors are 0.25 and 0.5, respectively. The distribution and abundance of these two surface species at pH 3.5 - 10.5 was further predicted using the CD MUSIC model. It is shown that = FeOAsO3 H^1.5 - dominated under acidic conditions, while = Fe2 O2 AsO2^2- was abundant under alkaline conditions.
出处 《环境科学学报》 CAS CSCD 北大核心 2006年第10期1592-1599,共8页 Acta Scientiae Circumstantiae
基金 国家自然科学基金项目(No.20207013) 国家"863"青年基金项目(No.2004AA649280)~~
关键词 铁铈氧化物 电位滴定 表面络合模型 Fe-Ce oxide arsenic potentiometric titration surface complexation model
  • 相关文献

参考文献2

二级参考文献17

  • 1文湘华,环境化学,1996年,15卷,2期,97页
  • 2Fu Gongmin,Wat Res,1992年,26卷,225页
  • 3Zhang Y,Yang M,Huang X.2003.Arsenic (Ⅴ) removal with a Cedoped iron oxide adsorbent[J].C hemosphere,51:945-952
  • 4Zhang Y,Yang M,Dou X M,et al.2005.Arsenate adsorption on an FeCe bimetal oxide adsorbent:role of surface properties[J].Environ Sci Technol,39 (18):7246-7253
  • 5Dimirkou A,Ioannou A,Doula M.2002.Preparation,characterization and sorption proterties for phosphates of hematite,bentonite,and bentonite-hematite system[J].Adv Colloid Interfac,97:37-61
  • 6Farrell J,Wang J P.2001.Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media[J].Environ Sci Technol,35:2026-2032
  • 7Fendorf S,Eick M J,Grossl P,et al.1997.Arsenate and chromate retention mechanisms on goethite.1.Surface structure[J].Environ Sci Technol,31:315-319
  • 8Goldberg S,Johnston C T.2001.Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements,vibrational spectroscopy,and surface complexation modeling[J].J Colloid Interf Sci,234:204-216
  • 9Myneni S C B,Traina S J,Waychunas G A,et al.1998.Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions,solids,and at mineral-water interfaces[J].Geochim Cosmochim Acta,62:3285-3300
  • 10Nakamoto K.1978.Infrared and Raman Spectra of Inorganic and Coordination Compounds (3rd ed)[M].New York,London:John Wiley

共引文献58

同被引文献139

引证文献5

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部