期刊文献+

模糊多目标遗传算法及其在营养决策中的应用 被引量:2

FUZZY MULTIOBJECTIVE GENETIC ALGORITHMS APPLIED TO SOLVE NUTRITION DECISION-MAKING PROBLEMS
在线阅读 下载PDF
导出
摘要 讨论了用进化算法来解决多目标优化问题,提出用一个模糊增强Pareto进化算法FSPEA来解决多目标优化问题,并且通过与其他4种算法所获得的解进行比较来分析FSPEA算法的性能.最后把FSPEA应用到营养分析和决策的优化问题来获求最佳膳食营养结构.结果证明了该算法的有效性. Multiobjective optimization problems solved by evolutionary algorithms were discuss. We present a Fuzzy Strength Pareto Evolutionary Algorithm (FSPEA) to solve this class of problems and its performance is analyzed in comparing its results with those obtained with four others algorithms. Finally, the FSPEA is applied to solve the nutrition decision making to map the Pareto-optimum front. The results in the problem show its effectiveness.
出处 《河南工业大学学报(自然科学版)》 CAS 北大核心 2006年第5期62-65,共4页 Journal of Henan University of Technology:Natural Science Edition
基金 河南省重点科技攻关项目(0423020400)
关键词 多目标进化算法 非支配分类遗传算法 营养决策 multiobjective evolutionary algorithms nondominated sorting genetic algorithms nutrition decisionmaking
  • 相关文献

参考文献5

  • 1Deb K, Agrawal S, Pratap A, et al. A fast and elist muliti-objective genetic algorithms: NSGA-Ⅱ[ J]. IEEE Transactions On Evolutionary Computation ,2002,6(2) : 182-197.
  • 2Zitzler E, Thiele L. Muhiobjective evolutionary algorithms: a comparative case study and the strength pareto approach [ J ]. IEEE Transactions On Evolutionary Computation, 1999,3(4) : 257-271.
  • 3Alexandre H Dias F, Joao A de Vasconcelos.Multiobjective genetic algorithms applied to solve optimization problems[J]. IEEE Trans On Magnetics, 2002, 38(2) : 1133-1136.
  • 4XU M. Fuzzy optimization of structures by the two-phase method [ J]. Computers and Structures, 1989,3(6) :575-580.
  • 5Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[ C ]. in Proceedings 1st IEEE Conference on Evolutionary Computation, Piscataway NJ, June 1994. 82- 87.

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部