期刊文献+

基于多个机器学习算法的投票式邮件过滤模型 被引量:1

Voting E-mail Filter Model Based on Multi-machine Learning Algorithms
在线阅读 下载PDF
导出
摘要 机器学习算法在目前垃圾邮件过滤中扮演着重要的角色,但单一学习算法往往有各自的缺陷,限制了其在邮件过滤中的进一步应用。该文介绍了几种典型机器学习算法,并构造了一种基于多机器学习算法的投票式过滤模型。实验表明,该方法充分利用了各机器学习算法的优势,弥补了各自的不足,达到了比单一学习算法更好的过滤性能。 The machine learning algorithms play an important role in current spam filter, but a single machine learning algorithm has its own drawback which restrains it from further application in E-mail filter. This paper introduces some typical machine learning algorithms, and constructs a voting E-mail filter model based on multi-machine learning algorithms. The experiments show that this method makes use of every machine learning algorithm's advantage, and offsets its disadvantage, and achieves better filter performance than a single algorithm.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第19期214-216,共3页 Computer Engineering
关键词 垃圾邮件 过滤 机器学习 投票 Spam Filter Machine learning Voting
  • 相关文献

参考文献3

  • 1Ho K Y,Lawrence T.Curbing Spam via Technical Measures[Z].http://www.ida.gov,sg.
  • 2Androutsopoulos,Paliouras G,Michelakis E.Learning to Filter Unsolicited Commercial E-mail[R].NCSR Demokritos,Technical Report:2004-02,2004.
  • 3Littlestone N.Learning Quickly When Irrelevant Attributes Abound:A New Linear-threshold Algorithm[J].Machine Learning,1988,2(4):285-318.

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部