期刊文献+

基于模糊聚类算法的船舶故障诊断技术 被引量:7

Diagnosis Technics of Ship′s Fault Bassed on the Fuzzy Clustering Algorithm
在线阅读 下载PDF
导出
摘要 由于大型设备故障症状与故障原因之间关系十分复杂,使得传统诊断方法在实际应用中效果不理想。研究采用模糊C-均值聚类算法,将被诊断对象间故障和症状的特征通过建立模糊关系矩阵进行了故障分类,用当前所得的故障征兆群与过去该设备故障征兆结果相对照,找出最相似的结果,从而确定其故障。通过船舶主机轴系诊断的实例,充分证明了该方法的有效性。 The traditional fault detection method for the large equipment was not helpful because of the complicated relationship between the fault symptoms and causes of the equipment. A fuzzy C- means clustering algorithm is used and the features of faults and symptoms of the detected object are classified based on the established fuzzy connection matrix. The comparison between the fault symptom clusters collected from an equipment recently and the previous outcomes of the fault symptoms of that equipment are made, the closest outcomes are identified and the fault is spotted. A case of the recent fault detection for the shafting of main engine fully proves the effectiveness of the above- mentioned method.
机构地区 大连海事大学
出处 《舰船电子工程》 2006年第5期118-121,共4页 Ship Electronic Engineering
关键词 模糊聚类 船舶 故障诊断 C-均值算法 主机轴系 fuzzy clustering, ship, fault diagonoses, C- means algorithm, shafting of main engine
  • 相关文献

参考文献4

  • 1陈凯,朱杰,王豪行.复杂系统故障诊断中的模糊聚类方法[J].上海交通大学学报,1998,32(6):61-64. 被引量:27
  • 2[2]Venket Venkatasubramanian,King Chan.A neural network methodology for process fault Diagnosis[J].Journal of AIChE,1989,35 (12):1993 ~ 2002
  • 3[3]Mallat S,Whang W L.Singularity Detection and Processing With Wavelets[J].IEEE Transactions on Information Theory,1992,38(2):125 ~ 134
  • 4[4]鄙常骥.汽轮发电机故障实例与分析[M].北京.中国电力出版社,2001

二级参考文献1

  • 1王豪行,电路计算机辅助设计,1996年,190页

共引文献26

同被引文献49

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部