期刊文献+

非局部的退化抛物型方程组的解的爆破和整体存在性 被引量:6

Blow-up and Global Existence for a Nonlocal Degenerate Parabolic System
在线阅读 下载PDF
导出
摘要 该文采用弱上下解方法以及正则化的技巧,研究了一类非局部的退化的抛物型方程组的解的爆破和整体存在性,给出了方程组的解的爆破指标p_c=(p_1+p_2)(q_1+q_2)-mn,证得当p_c<0时,对任意的初值,方程组的解整体存在;当p_c>0时,对充分大的初值,解在有限时刻爆破,对充分小的初值,解整体存在;当p_c=0时,若区域充分小,则方程组存在非负整体解,若区域包含了一个充分大的球,则解在有限时刻爆破. This paper investigates the blow-up and global existence of nonnegative solutions for a class of nonlocal degenerate parabolic system. The sub and super solutions method and the regularization skill are used. The critical exponent of the system is gained. It's proved that if pc = (P1 + P2)(q1 + q2) -mn 〈 0, every nonnegative solution is global, whereas if pc 〉 0, there exists both global and blow-up nonnegative solution. When pc = 0, we show that if the domain is sufficiently small, every nonnegative solution is global while if the domain is large enough that is, if it contains a sufficiently large ball, there is no global solution. The related results of papers [8,10,11] are the special cases of this paper.
作者 陈玉娟
机构地区 南通大学理学院
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第5期731-740,共10页 Acta Mathematica Scientia
基金 江苏省高校自然科学研究计划项目(04KJB110108)资助
关键词 退化方程组 非局部源 爆破 Degenerate parabolic system Nonlocal source Blow-up
  • 相关文献

参考文献15

  • 1Bebermes J W, Bressan A. Thermal behavior for a confined reactive gas. J Differential Equations, 1982,44:118-133
  • 2Pao C V. Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory. J Math Anal Appl, 1992, 166:591-600
  • 3Galaktionov V A, Levine H A. A general approach to critical Fujita exponents in nonlineetr parabolic problems. Nonlinear Anal, 1998, 34:1005-1027
  • 4Deng W B, Duan Z W, Xie C H. The blow-up rate for a degenerate parabolic equation with a nonlocal source. J Math Anal Appl, 2001, 264:577-597
  • 5Ph Souplet. Blow-up in nonlocal reaction-diffusion equations. SIAM Math Anal, 1998, 29:1301-1334
  • 6Li Y X, Xie C H. Blow up for semilinear parabolic equations with nonlinear memory. Z angew Math Phys,2004, 55:15 27
  • 7Furter J, Grinfeld, Local vs. Nonlocal interactions in population dynamics. J Math Biology, 1989, 27:65-80
  • 8Deng W B, Li Y X, Xie C H. Blow-up and global existence for a nonlocal degenerate parabolic system. J Math Anal Appl, 2003, 277:199-217
  • 9Anderson J R. Local existence and uniqueness of solutions of degenerate parabolic equations. Comm Patial Differential Equations, 1991, 16:105-143
  • 10Escobedo M, Herrero M A. A semilinear parabolic system in a bounded domain. Ann Mat Pura Appl,1993, 165:307-315

同被引文献51

  • 1LinZhigui LiuYurong.UNIFORM BLOWUP PROFILES FOR DIFFUSION EQUATIONS WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY1[J].Acta Mathematica Scientia,2004,24(3):443-450. 被引量:26
  • 2顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 3Anderson J R. Local existence and uniqueness of solutions of degenerate parabolic equations. Comm Patial Differential Equations, 1991, 16:105-143.
  • 4Deng W B, Duan Z W, Xie C H. The blow-up rate for a degenerate parabolic equation with a non-local source. J Math Anal Appl, 2001, 264:577-597.
  • 5Deng W B, Li Y X, Xie C H. Blow-up and global existence for a nonlocal degenerate parabolic system. J Math Anal Appl, 2003, 277:199-217.
  • 6Deng K, Wang M K, Levine H A. The influence of nonlocal nonlinearities on the long time behavior of solutions of Burgers equation. Quart Appl Math, 1992, 50:173-200.
  • 7Escobedo M, Herrero M A. A semilinear parabolic system in a bounded domain. Ann Mat Pura Appl, 1993, CLSX(4): 307-315.
  • 8Furter J, Grinfeld M. Local vs non-local interactions in population dynamics. J Math Biology, 1989, 27: 65-80.
  • 9Galaktionov V A, Kurdyumov S, Samarskii A A. A parabolic system of quasi-linear equations Ⅱ. Differential Equations, 1983, 19:1558-1571.
  • 10Galaktionov V A, Levine H A. A general approach to critical Fujita exponents in nonlinear parabolic problems. Nonlinear Anal, 1998, 34:1005-1027.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部