期刊文献+

一类非线性时滞系统的解耦控制 被引量:1

Decoupling Control for a Class of Nonlinear Time-Delay Systems
在线阅读 下载PDF
导出
摘要 利用微分几何方法研究了一类非线性多输入多输出时滞系统的解耦问题.讨论了此类系统可解耦的充分条件,并给出了此类系统实现输入/输出间精确线性化的条件以及其标准形.文中给出了非线性时滞系统得以解耦的非线性状态反馈控制律;此状态控制律不但可以实现输出与时滞状态变量的解耦,还可以实现输出与输入间的精确线性化.而其闭环标准形的给出为此类系统实现各种控制目标带来了方便.* The decoupling problem for a class of nonlinear MIMO time-delay systems is studied with differential geometric method. The sufficient conditions that enable the system to be decoupled are discussed, and the input-output linearization conditions with the canonical form of this nonlinear time-delay system are presented. A nonlinear state feedback control law is designed to decouple the output from the delayed state variables and realize precise linearization between the output and input channels. Canonical form of the closed loop is given as well, which helps to realize further control aims conveniently.
出处 《信息与控制》 CSCD 北大核心 2006年第5期564-567,共4页 Information and Control
基金 国家自然科学基金资助项目(60074001) 山东省自然科学基金资助项目(Y2000G02) 青岛科技大学科研启动基金资助项目(0022142)
关键词 微分几何方法 非线性时滞系统 解耦控制 I/O线性化 differential geometric method nonlinear time-delay system decoupling control I/O linearization
  • 相关文献

参考文献8

  • 1Byrnes C I,Isidori A.New results and examples in nonlinear feedback[J].Systems and Control Letters,1989,12 (5):437~442.
  • 2Isidori A,Krener A J,Gori-Giorgi C,et al.Nonlinear decoupling via feedback:a differential geometric approach[J].IEEE Transactions on Automatic Control,1981,AC -26(2):331~345.
  • 3Zheng Y,Zhang C,Evans R J.Differential vector space approach to nonlinear system regulation[J].IEEE Transactions on Automatic Control,2000,45 (11):1997~2010.
  • 4Fliess M,Levine J,Martin P,et al.Lie-Backlund approach to equivalence and flatness of nonlinear systems[J].IEEE Transactions on Automatic Control,1999,44 (5):922~937.
  • 5Nijmeijer H,Van der Schaft A.Controlled invarianee by static output feedback for nonlinear systems[J].Systems and Control Letters,1982,2 (1):39~46.
  • 6Descusse J.A necessary and sufficient condition for decoupling using output feedback[J].International Journal of Control,1980,31(5):833~840.
  • 7Huijberts H J C,Moog C H,Pothin R.Input-output decoupling of nonlinear systems by static measurement feedback[J].Systems and Control Letters,2000,39(2):109~114.
  • 8Ha I J,Gilbert E G.Complete characterization of decoupling control laws for a general class of nonlinear systems[J].IEEE Transactions on Automatic Control,1986,31 (9):823~830.

同被引文献11

  • 1王岩青,姜长生.一类非线性不确定时滞系统的鲁棒H_∞控制[J].信息与控制,2005,34(2):147-151. 被引量:11
  • 2王永强 曹永岩 孙优贤.受约束时滞系统的抗饱和补偿器增益设计[J].自动化学报,2006,32(1):1-8.
  • 3Saberi A, Lin Z L, Teel A R. Control of linear systems with sat- urating actuators[J]. IEEE Transactions on Automatic Control, 1996, 41(3): 368-378.
  • 4Sussmann H J, Sontag E D, Yang Y. A general resutt on the stabilization of linear systems using bounded controls[J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2411-2425.
  • 5Bitsoris G, Gravalou E. Design techniques for the control of discretertime systems subject to state and control constraints[J].IEEE Transactions on Automatic Control, 1999, 44(5): 1057- 1061.
  • 6Wang F Y, Jin N, Liu D R, et al. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlin- ear systems with ε-error bound[J]. IEEE Transactions on Neural Networks, 2011, 22(1): 24-36.
  • 7Abu-Khalaf M, Lewis F L. Nearly optimal control laws for non- linear systems with saturating actuators using a neural network I-IJB approach[J]. Automatica, 2005, 41(5): 779-791.
  • 8Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time non- linear HJB solution using approximate dynamic programming: Convergence proof[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 943-949.
  • 9WEI Qing-Lai,ZHANG Hua-Guang,LIU De-Rong,ZHAO Yan.An Optimal Control Scheme for a Class of Discrete-time Nonlinear Systems with Time Delays Using Adaptive Dynamic Programming[J].自动化学报,2010,36(1):121-129. 被引量:17
  • 10苏宏业,潘红华,蒋培刚,褚健.一类具有非线性饱和执行器的不确定时滞系统鲁棒控制[J].控制与决策,2000,15(1):23-26. 被引量:19

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部