期刊文献+

STOCHASTIC ALGORITHM AND NUMERICAL SIMULATION FOR DROP SCAVENGING OF AEROSOLS

STOCHASTIC ALGORITHM AND NUMERICAL SIMULATION FOR DROP SCAVENGING OF AEROSOLS
在线阅读 下载PDF
导出
摘要 The time evolution of aerosol size distribution during precipitation, which is founded mathematically by general dynamic equation (GDE) for wet removal, describes quantitatively the process of aerosol wet scavenging. The equation depends on aerosol size distribution, raindrop size distribution and the complicated model of scavenging coefficient which is induced by taking account of the important wet removal mechanisms such as Brownian diffusion, interception and inertial impaction. Normal numerical methods can hardly solve GDE, which is a typical partially integro-differential equation. A new multi-Monte Carlo method was introduced to solve GDE for wet removal, and then was used to simulate the wet scavenging of aerosols in the real atmospheric environment. The results of numerical simulation show that, the smaller lognormal raindrop size distribution and lognormal initial aerosol size distribution, the smaller geometric mean diameter or geometric standard deviation of raindrops can help scavenge small aerosols and intermediate size aerosols better, though large aerosols are prevented from being collected in some ways. The time evolution of aerosol size distribution during precipitation, which is founded mathematically by general dynamic equation (GDE) for wet removal, describes quantitatively the process of aerosol wet scavenging. The equation depends on aerosol size distribution, raindrop size distribution and the complicated model of scavenging coefficient which is induced by taking account of the important wet removal mechanisms such as Brownian diffusion, interception and inertial impaction. Normal numerical methods can hardly solve GDE, which is a typical partially integro-differential equation. A new multi-Monte Carlo method was introduced to solve GDE for wet removal, and then was used to simulate the wet scavenging of aerosols in the real atmospheric environment. The results of numerical simulation show that, the smaller lognormal raindrop size distribution and lognormal initial aerosol size distribution, the smaller geometric mean diameter or geometric standard deviation of raindrops can help scavenge small aerosols and intermediate size aerosols better, though large aerosols are prevented from being collected in some ways.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第10期1321-1332,共12页 应用数学和力学(英文版)
基金 Project supported by the National Key Basic Research and Development Program of China (No.2002CB211602)the National Natural Science Foundation of China (No.90410017)
关键词 wet removal aerosol precipitation Monte. Carlo method numerical simulation wet removal aerosol precipitation Monte. Carlo method numerical simulation
  • 相关文献

参考文献4

二级参考文献4

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部