期刊文献+

基于遗传算法的支持向量回归机参数选取 被引量:39

Parameters selection of support vector regression by genetic algorithms
在线阅读 下载PDF
导出
摘要 针对支持向量回归机(support vector regression,SVR)的参数选择问题,提出了基于遗传算法的SVR参数自动确定方法。分析了SVR各参数对其性能的影响,根据已有的样本集确定遗传算法的搜索区间,然后在该区间内对搜索的参数进行最优选取。为了减少所选参数对训练样本的依赖性,借鉴交叉验证的方法,把训练集分为估计子集,用来选择模型;确认子集选择参数,以推广能力最好的一组参数作为最终参数。将所提出的方法应用于受噪声影响的标准函数,实验结果表明,由该方法所得参数确定的SVR具有较优的预测性能。 An automatic method for selecting the parameters of support vector regression (SVR) based on genetic algorithms is presented. This method defines the search area by analyzing the behavior of SVR with different parameters that also has different influence on the performance of SVR model and then choose the optimal parameters in the given region. In particular, the generalization ability is guaranteed by invoking an internal cross-validation procedure during the optimization process of the SVR model parameters. Experimental results assess the feasibility of the proposed approach for data sets with several noises and demonstrate an improvement of generalization performance.
机构地区 西安科技大学
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第9期1430-1433,共4页 Systems Engineering and Electronics
基金 陕西省自然科学基金资助课题(2004JC12)
关键词 遗传算法 支持向量回归机 参数选择 交叉验证 genetic algorithms; support vector regression (SVR); parameter selection; cross-validation
  • 相关文献

参考文献10

  • 1Vladimir Cherkassky, Ma Yunqian. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17:113-126.
  • 2Vapnik V. Statistical learning theory[M]. Wiley, 1998.
  • 3SimonHaykin 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 4Kwok J T, Tsang I W. Linear dependency between and the input noise in-support vector regression[J]. IEEE Trans. on Neural Networks, 2003, 14(3) :544-553.
  • 5Scholkopf B, Smola A. Learning with kernels: support vector machines, regularization, and beyond [R]. Cambridge, MA: MIT Press, 2002.
  • 6Wang W, Xu Z, Lu W, et al. Determination of the spread parameter in the Gaussian kernel for classification and regression [J]. Neurocomputing, 2003, 55: 643-663.
  • 7Walczack B, Massart D L. Local modelling with radial basis function networks[R]. Chemom. , Intell. ,Lab. , Syst. , 2000, 51: 219-238.
  • 8Sergios T,Konstantinos K.模式识别[M].北京:电子工业出版社,2004.
  • 9Wahba G, Lin Yi, et al. Generalized approximate cross validation for support vector machines or another way to look at margin quantities[R]. Advances in Large Margin Classifiers MIT Press, 2000:297-209.
  • 10Gunn S R. Support vector machines for classification and regression[R]. University of Southampton, Southampton. UK. 1997.

共引文献90

同被引文献396

引证文献39

二级引证文献272

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部