期刊文献+

基于本体论的文本挖掘技术综述 被引量:17

Survey of text mining based on ontology
在线阅读 下载PDF
导出
摘要 文本挖掘技术是从海量文本信息中获取潜在有用知识的有效途径。传统的文本挖掘方法由于不能有效运用语义信息而难以达到更高的准确度。本体论为语义信息的合理表示和有效组织提供了理论支持和技术手段。介绍和分析了常识本体和领域本体以及基于这些本体的文本挖掘方法。 Text mining is an effective means of detecting potentially useful knowledge from large text database. However, conventional text mining technology cannot achieve high accuracy, because it cannot effectively make use of the semantic information of the text. Ontology provides theoretical basis and technical support for semantic information representation and organization. This paper introduces common ontology and domain ontology, and analyzes text mining technology based on these ontologies.
出处 《计算机应用》 CSCD 北大核心 2006年第9期2013-2015,共3页 journal of Computer Applications
基金 国家863计划资助项目(2004AA1120202003AA1152102003AA111020)
关键词 文本挖掘 本体论 常识本体 领域本体 text mining ontology common ontology domain ontology
  • 相关文献

参考文献15

  • 1HEARST MA. Text data mining: Issues, techniques, and the relationship to information access[ Z]. Presentation notes for UW/MS workshop on data mining, 1997.
  • 2FELDMAN R, DAGAN I. Knowledge discovery in textual databases(KDT) [ A]. Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD'95) [ C ]. Montreal,Canada, AAAI Press, 1995. 112-117.
  • 3GRUBER TR. A translation approach to portable ontologies [ J ] .Knowledge Acquisition, 1993, 5 (2) : 199 - 220.
  • 4STUDER R, BENJAMINS VR, FENSEL D. Knowledge Engineering: Principles and Methods[ J]. Data and Knowledge Engineering,1998, 25(102) : 161 - 197.
  • 5FOSKETT DJ. Thesaurus[ A]. WILLETT P, SPARCK-JONES K,eds. Reproduced in Readings in Information Retrieval[ C], 1997.111 - 134.
  • 6SEDDING J, KAZAKOV D. Wordnet-based text document clustering[ A]. Proceedings of the Third Workshop on Robust Methods in Analysis of Natural Language Data (ROMAND) [ C]. Geneva, 2004.104 -113.
  • 7ROSSO P, FERRETTI E, JIMENEZ D, et al. Text Categorization and Information Retrieval Using WordNet Senses[ Z]. The Second Global Wordnet Conference GWC 2004 [ C]. Czech Republic,2004.
  • 8HOTHO A, STAAB S,. STUMME G. Wordnet improves text document clustering[ A]. Proceedings of the Semantic Web Workshop at SIGIR-2003, 26th Annum International ACM SIGIR Conference[ C], 2003.
  • 9INO Y, MATSUI T, OHWADA H. Extracting Common Concepts from WordNet to Classify Documents[ A]. Artificial Intelligence and Applications[C], 2005. 656-661.
  • 10AGIRRE E, RIGAU G. A proposal for word sense disambiguation using conceptual distance[ A]. International Conference " Recent Advances in Natural Language Processing" RANLP'95[ C]. Tzigov Chark, Bulgaria, 1995.

共引文献16

同被引文献199

引证文献17

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部