摘要
研究了薄楔体外部定常和非定常超空泡流问题.采用时间有限差分离散化方法求解超空泡流积分方程,得到了问题的数值解.给出了Froude数对铅垂超空泡长度和形状的影响,以及楔角或空化数作非周期变化,特别是较高频率脉冲变化时,超空泡长度和形状的非定常变化过程.应用Logvinovich空泡独立膨胀原理对空泡形状的非定常变化过程作了定性解释.
Steady and unsteady supercavitating flow around slender wedges is investigated. Solving integral equations of supercavitating flow based on the finite difference time discretization method, some numerical results are obtained. The influence of Froude Number on the length and shape of vertical supercavity is analyzed. The change history of unsteady supereavity' s length and shape are investigated when the wedges angel or cavitation number is changed shape is in aperiodic time-dependence, especially in high-frequency impulse. The evolution of unsteady supercavity analyzed qualitatively using G. V. Logvinovich's principle of independence of the cavity section expansion.
出处
《哈尔滨理工大学学报》
CAS
2006年第4期106-110,共5页
Journal of Harbin University of Science and Technology
关键词
超空泡
积分方程方法
空泡独立膨胀原理
supercavitating cavity
integral equation methods
principle of independence of the cavity section expansion