期刊文献+

一种新的SVM对等增量学习算法 被引量:21

New algorithm for SVM-Based incremental learning
在线阅读 下载PDF
导出
摘要 在分析支持向量机(SVM)寻优问题的KKT条件和样本分布之间关系的基础上,分析了新增样本的加入对SV集的影响,定义了广义KKT条件。基于原训练样本集和新增训练样本集在增量训练中地位等同,提出了一种新的SVM增量学习算法。算法在及时淘汰对后继分类影响不大的样本的同时保留了含有重要分类信息的样本。对标准数据集的实验结果表明,算法获得了较好的性能。 Based on the analysis of the relation between the Karush-Kuhn-Tucker (KKT) conditions of Support Vector Machine(SVM) and the distribution of the training samples, the possible changes of support vector set after new samples are added to training set were analyzed, and the generalized Karush-Kuhn-Tucker conditions were defined. Based on the equivalence between the original training set and the newly added training set, a new algorithm for SVM-based incremental learning was proposed. With this algorithm, the useless samples were discarded and the useful training samples of importance were reserved. Experimental results with the standard dataset indicate the effectiveness of the proposed algorithm.
出处 《计算机应用》 CSCD 北大核心 2006年第10期2440-2443,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(50505051) 陕西省自然科学研究计划项目(2004F36)
关键词 支持向量机 增量学习 Support Vector Machine(SVM) incremental learning
  • 相关文献

参考文献7

  • 1BURGES CJC.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 2VAPNIK V.统计学习理论本质[M].北京:清华大学出版社,2000.
  • 3CAUWENBERGHS G,POGGIO T.Incremental and decremental support vector machine learning[J].Machine Learning,2001,44(13):4098-4151.
  • 4萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 5SYED N,LIU H,SUNG KK.Incremental learning with support vector machines[A].Proc.Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence (IJCAI-99)[C].Stockholm,Sweden,1999.
  • 6滕月阳,唐焕文,张海霞.一种新的支持向量机增量学习算法[J].计算机工程与应用,2004,40(36):77-80. 被引量:7
  • 7周伟达,张莉,焦李成.支撑矢量机推广能力分析[J].电子学报,2001,29(5):590-594. 被引量:56

二级参考文献16

  • 1Schlkopf B,IEEE Transactions on Signal Processing,1997年,45卷,11期
  • 2Vapnik V.The nature of statistical learning theory[M].Springer-Verlag,1995
  • 3S Amari,S Wu.Improving support machine classifier by modifying kernel function[J].Neural Networks, 1999; 12: 783~789
  • 4C J C Burges. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998;2(2):121~167
  • 5N Syed,H Liu,K Sung. Incremental learning with support vector machine.Availed at http://citeseer. nj.nec.com/syed99incremental.html
  • 6G.Fung,O L Mangasarian. Proximal support vector machine classifiers [C].In:The 7th ACM SIGKDD Int Conf on KDD'01,2001:77~86
  • 7O L Mangasarian,D R Musicant. Lagrangian support vector machines [J].Journal of Machine Learning Research,2001;1:161~177
  • 8O L Mangasarian. Data mining via support vector machines[C].In:IFIP Conference on System Modeling and Optimization,2001: 91~112
  • 9Stefan Ruping. Incremental learning with support vector machines[C].In:The First IEEE International Conference on Data Mining(ICDM),2001:641~642
  • 10http://www.cs.wisc.edu/~gfung/data

共引文献129

同被引文献145

引证文献21

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部