期刊文献+

地下水流数值模拟中随机因素的灵敏度分析 被引量:21

Analysis on sensitivity of stochastic factors in numerical simulation of groundwater flow
在线阅读 下载PDF
导出
摘要 本文以待定系数摄动随机有限元法为基础,在以渗透系数、给水度、边界、源汇项为随机变量的条件下,建立了二维潜水非稳定流随机模型,编制了二维摄动随机有限元通用程序。通过对太原盆地地下水系统的随机模拟,分析了渗透系数、给水度、边界、开采量4个随机因子对水头模拟值的影响程度。结果表明,对水头期望值影响的灵敏度:渗透系数最大,其次为给水度和边界值,井开采量最小;对水头方差影响的灵敏度:给水度最大,其次为渗透系数和边界值,井开采量最小;对水头摄动量影响的灵敏度,两个随机参数中渗透系数较大,给水度较小。 A 2-D stochastic finite element model of unsteady flow in phreatic aquifer based on perturbation coefficient awaiting determination stochastic FEM is proposed. In the model the infiltration coefficient, specified yield, boundary values and withdrawals are regarded as stochastic variables, and the program for computation of computer is developed. The effects of these four stochastic factors on simulation of water table are analyzed respectively through the stochastic simulation of groundwater flow in Taiyuan Basin, Shanxi Province. The results show that the ranking of sensitivities of four stochastic factors to expected water table according to their influence on simulation is as follows: the first one is infiltration, the next are specified yield and boundary values, the last is withdrawal. Whereas, the ranking for water table variances is: specified yield, infiltration coefficient, boundary value and withdrawal. The sensitivity of infiltration coefficient to water table perturbations is higher than that of specific yield.
出处 《水利学报》 EI CSCD 北大核心 2006年第8期977-984,共8页 Journal of Hydraulic Engineering
基金 教育部重点基金项目(104012) 国家重点基础研究发展规划(973)项目(G1999043606)
关键词 灵敏度 随机因子 地下水流 数值模拟 太原盆地 sensitivity stochastic factors groundwater flow numerical simulation Taiyuan Basin
  • 相关文献

参考文献9

二级参考文献32

  • 1刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126. 被引量:104
  • 2姚磊华.地下水水流模型的Taylor展开随机有限元法[J].煤炭学报,1996,21(6):566-570. 被引量:10
  • 3周仰效.国外地下水流及物质传输的模拟:现状与趋势.工程地质水文地质环境地质论文集[M].地震出版社,1993..
  • 4姚磊华.地下水运移随机数值模拟研究[M].北京:国家地震局地质研究所,1995..
  • 5[3]Anderson M P, Woessner W W. Applied groundwater modeling--Simulation of Flow and advective transport. New York: Academic Press Inc., 1992
  • 6[4]Cooley R L, Konikow L F, Naif R L. Nonlinear regression groundwater flow modeling of a deep regional aquifer system.Water Resources Research, 1986,22(13): 1759 ~ 1778
  • 7Philip J R, Knight J H, Waechter R T. Unsaturated seepage and subterranean holes: Conspectus and exclusion problem for circular cylindrical cavities [J]. Water Resour Res, 1989, 25: 16-28.
  • 8Yeh T-C J, Gelhar L W, Gutjahr A L. Stochastic analysis of unsaturated flow in heterogeneous soils: 1. Stochastically isotropie media [J]. Water Resour Res,1985, 21: 447-456.
  • 9Yeh T-C J, Gelhar L W, Gutjahr A L. Stochastic analysis of unsaturated flow in heterogeneous soils. 2. Stochastically isotropic media with variable a [J]. Water Resour Res, 1985, 21. 457-464.
  • 10Yeh T-C J, Gelhar L W, Gutjahr A L. Stochastic analysis of unsaturated flow in heterogeneous soils: 3. Obervation and applications [J]. Water Resour Res, 1985,21:465-471.

共引文献81

同被引文献177

引证文献21

二级引证文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部