期刊文献+

基于神经网络和模糊逻辑的工业过程故障诊断与报警系统 被引量:5

FAULT DIAGNOSIS AND ALARM SYSTEM OF INDUSTRIAL PROCESS BASED ON NEURAL NETWORK AND FUZZY LOGIC
在线阅读 下载PDF
导出
摘要 用单一理论和方法对复杂系统进行故障诊断效果不太好.文章讨论了基于神经网络和模糊系统的故障诊断以及它们之间结合方式的特点,提出了一种保障工业生产安全可靠运行的有效方法:分级故障诊断算法+过程监控与报警,仿真并设计了基于工控网络的工业过程故障诊断与报警系统.研究表明基于径向基函数神经网络+模糊逻辑的算法具有较快的训练速度和较好的泛化能力,可识别多回路故障. Fault diagnosis to complex system with one method is insufficient. The characteristics of fault diagnosis based on neural networks and fuzzy logic systems and their union wers discussed. A kind of effective method to safeguard industrial production was presented: graduation fault diagnosis and alarm system. Fault diagnosis and alarm system based on industrial control nets were simulated and designed. The results show that the algorithm based on radial basis function neural network and fuzzy logic has faster training speed and better generalization ability, and it can distinguish multi-routes faults.
出处 《动力学与控制学报》 2006年第3期284-288,共5页 Journal of Dynamics and Control
关键词 故障诊断 神经网络 模糊逻辑 工业过程 fault diagnosis, neural network, fuzzy logic inference, industrial process
  • 相关文献

参考文献2

  • 1[5]Diego Ruiz.Fault diagnosis support system for complex chemical plants.Computer And Chemical Engineering,2001,25:151~160
  • 2[7]Wang XZ,Chen BH.Neural nets,fuzzy sets and digraphs in safety and operability studies of refinery reaction processes.Chemical Engineering Science,1996,51(10):2169~2178

同被引文献35

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部