期刊文献+

基于帧间差分背景模型的运动物体检测与跟踪 被引量:34

Moving Objects Detection and Tracking Based on Two Consecutive Frames Subtraction Background Model
在线阅读 下载PDF
导出
摘要 针对背景差分算法中在复杂背景下参考帧的提取问题,提出了一种新的背景提取方法;该算法用帧间差分法将帧中的背景象素点检测出来,再确立出背景帧;由于排除了帧中运动物体的影响,因而提取出的背景干净,效果很好,然后运用背景差分检测出场景中的物体,最后采用一种新的运动物体跟踪算法,实现了运动物体和静止物体的识别,克服了以往检测算法中的误检和空洞问题,实验结果表明,该方法快速有效,能够满足实时性的要求。 Aimed at the problem that how to attain background frame in complex condition, a new method to acquire background is presented. Two consecutive frames is subtracted to pick up background pixel in this method, so, background frame is built. The cleanly background was attained quickly, because the moving object in frame did not affect the process of attaining. Then background subtraction was used to detect objects in frame. At last, moving objects and still objects were distinguished by using a new tracking algorithm. The algorithm can overcome the mistake and imperfection which appeared in old moving object detection algorithm. The results showed that this algorithm combines the advantages of veracity and runtime, and fit for real time detection.
出处 《计算机测量与控制》 CSCD 2006年第8期1004-1006,1009,共4页 Computer Measurement &Control
关键词 视频序列图像 物体检测 阴影检测 物体跟踪 video-frequency image sequence objects detection shadow detection objects tracking
  • 相关文献

参考文献7

  • 1Barron J,Fleet D,Beachem in S.Performance of optical flow techniques[J].International Journal of computer Vision 1994,12(1):42-47.
  • 2Meier T,Ngun K N.Video Segmentation for Content-Based Coding[J].IEEE Trans.on Circuits and Systems for Video Technology,1999,9 (8):1190-1203.
  • 3Gupt S,Masound O,Martin RFK,etal.Der ection and classification for vechicles[J].IEEE Transcations on Intelligent Transpor-atationSystems.2002,3 (1):37-47.
  • 4Haritaoglu I,Davis L S,Harwood D.W4 Who? Where? What?A Real Time System for Detecing and Tracking People[A].In FGR98[C].1998.
  • 5林洪文,涂丹,李国辉.基于统计背景模型的运动目标检测方法[J].计算机工程,2003,29(16):97-99. 被引量:80
  • 6Cucchiara R,Grana C,Piccardi M,et al.Improving shadow suppression in moving object detection with HSV color information[A].Proceedings of IEEE IntelligentTransportation Systems conference[C].Oakland,CA,USA,2001:334-339.
  • 7Chen S C,Shyu M L,Zhang C,et al.Object tracking and augmented transition network for video Indexing and moding[A].12th IEEE International Conference on Tools with Artificial Intelligence (ICTAI2000)[C].Vancouver,2000,428-435.

二级参考文献8

  • 1Collins R, Lipton A,Kanade T,et al. A System for Video Surveillance and Monitoring.Tech. Report CM U-RI-TR-00-12,Robotics Institute,Carnegie Mellon University,2000-05.
  • 2Koller D, Daniilidis K,Nagel H.Model-bascd Object Tracking in Monocular Image Sequences of Road traffic Scenes.International Journal of Computer Vision, 1993,10(3).
  • 3Wren C R,Azarbayejani A,Darrell T.Plinder:Real_time Tracking of the Human Body.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1977-07,7.
  • 4Haritaoglu I,Davis L S,Harwood D.W4 Who? When? Where? What? A Rreal Time System for Detecing and Tracking People.In FGR98,1998.
  • 5Mclvor M.Background Subtraction Techniques.IVCNZ00, Hamilton,New Zealand, 2000-11.
  • 6Toyama K,Krumm J.Brumitt B.et al.Wallowver; Principles and Practice of Background Maintenance.ln International Conference on Computer Vision (1999).
  • 7Marcenaro L.Gera G.Rcgazzoni C.Adaptive Change Dctection APProach for Objcet Detection in Outdoor Scenes Under Variable Speed IIIumination Changes.European Signal Processing Conference Eusipco 2000,Tamperc.Finland.
  • 8Cucchiara R,Grana C.Piceardi M.Improving Shadow Suppression in Moving Objcet Detection with HSV Color Information.Proc.of ITSC,2001.

共引文献79

同被引文献229

引证文献34

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部