期刊文献+

求解Job-shop调度问题的混合遗传算法 被引量:3

Hybrid genetic algorithm of solving job-shop scheduling problems
在线阅读 下载PDF
导出
摘要 分析了单件生产车间调度问题,提出了适合Job-shop调度的算法-混合遗传算法.通过分析几种求解该问题的典型混合遗传算法,说明了混合遗传算法是求解该问题的可行且有效的方法,并且在具体的环境下有一定的优越性。 The Job - shop Scheduling is analyzed, and the algorithm adapting to job - shop scheduling - hybrid genetic algorithm is proposed. By discussing some typical hybrid genetic algorithm of solving this problem, it illuminated that HGA is a feasible and effective method of the problem, it has some superiority in given condition.
出处 《机械设计与制造》 北大核心 2006年第8期19-21,共3页 Machinery Design & Manufacture
关键词 单件生产车间调度 混合遗传算法 模拟退火算法 启发式规则 Job -shop scheduling Hybrid genetic algorithm Simulated anneafing algorithm Heuristic algorithm
  • 相关文献

参考文献3

二级参考文献18

  • 1皮建文,陈铁英.求解资源约束问题的启发式遗传算法[J].系统工程,1997,15(3):9-11. 被引量:2
  • 2朱善君.可编程序控制系统[M].北京:清华大学出版社,1992..
  • 3Lee C, Danusaputro S, Lim C. Minimizing weighted number of tardy jobs and weighted earliness-tardiness penalties about a common due date [J]. Computers and Operations Research, 1991,18: 379-389.
  • 4Van Laarhoven P, Arats E, Lenstra J. Job shop scheduling by simulated annealing [J]. Operations Research, 1992, 40(1): 113-125.
  • 5Dell′Amico M,Trubian M. Appling tabu search to the job shop scheduling problem [J]. Annals of Operations Research, 1993, 40(3): 231-252.
  • 6Groce F, Tadei R, Volta G. A genetic algorithm for the job shop problem [J]. Computers and Operations Research, 1995, 22: 495-509.
  • 7Jain A S, Meeran S. Deterministic job-shop scheduling: Past, present and future [J]. European Journal of Operational Research, 1999, 113: 390-434.
  • 8Bruno G, Elia A, Laface P A. Rule-based system to schedule production[J]. Computer, 1986, 19(7): 32~39.
  • 9Grefenstette J J. Optimization to control parameters for genetic algorithms[J]. IEEE Trans Syst Man Cybern, 1986, 16(1): 122~128.
  • 10 Andrew Kusiak著.杨靖宇,路际联译.智能制造系统[M].北京:清华大学出版社,1993

共引文献19

同被引文献7

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部