摘要
Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph Theory, 1991, 439-449) conjectured that σ(k, n) = (k - 1)(2n- k) + 2. Li et al. (Science in China, 1998, 510-520) proved that the conjecture is true for k 〉 5 and n ≥ (k2) + 3, and raised the problem of determining the smallest integer N(k) such that the conjecture holds for n ≥ N(k). They also determined the values of N(k) for 2 ≤ k ≤ 7, and proved that [5k-1/2] ≤ N(k) ≤ (k2) + 3 for k ≥ 8. In this paper, we determine the exact values of σ(k, n) for n ≥ 2k+3 and k ≥ 6. Therefore, the problem of determining σ(k, n) is completely solved. In addition, we prove as a corollary that N(k) -= [5k-1/2] for k ≥6.
Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph Theory, 1991, 439-449) conjectured that σ(k, n) = (k - 1)(2n- k) + 2. Li et al. (Science in China, 1998, 510-520) proved that the conjecture is true for k 〉 5 and n ≥ (k2) + 3, and raised the problem of determining the smallest integer N(k) such that the conjecture holds for n ≥ N(k). They also determined the values of N(k) for 2 ≤ k ≤ 7, and proved that [5k-1/2] ≤ N(k) ≤ (k2) + 3 for k ≥ 8. In this paper, we determine the exact values of σ(k, n) for n ≥ 2k+3 and k ≥ 6. Therefore, the problem of determining σ(k, n) is completely solved. In addition, we prove as a corollary that N(k) -= [5k-1/2] for k ≥6.
基金
National Natural Science Foundation of China(No.10401010)