期刊文献+

蚁群优化算法在发电机励磁控制中的应用研究 被引量:2

An Applied Research on Excitation Control of Synchronous Generator Using Ant Colony Optimization Algorithm
在线阅读 下载PDF
导出
摘要 针对现有发电机励磁控制器参数优化中存在的寻优时间长、易陷入局部最优的问题,提出了一种引入杂交及变异算子的蚁群算法。该算法利用蚁群算法良好的全局寻优能力,避免搜索陷入局部最优,同时借鉴遗传算法的思想,利用杂交及变异算子来进行局部寻优,使其能快速搜索到全局最优点。MATLAB仿真结果表明,该算法可行且有效。 Aimed at the deficiency in optimization on Excitation Control of Synchronous Generator about long time in optimizing and falling in local best problem easily,a new method based on ant colony algorithm with crossover and mutation operators is presented in this paper. The ability of searching for better global optimization is used to avoid the local best. Meanwhile,the idea of ge- netic algorithm in using crossover and mutation operators to search for local best is also used to improve the speed of searching for global optimization point. Finally,the simulation results show that the proposed algorithm is effective.
出处 《西安理工大学学报》 CAS 2006年第2期146-149,共4页 Journal of Xi'an University of Technology
关键词 励磁控制 蚁群算法 PID控制 杂交及变异算子 全局最优点 excitation control ant colony algorithm PID control crossover and mutation operators global optimization point
  • 相关文献

参考文献6

  • 1谭冠政,李文斌.基于蚁群算法的智能人工腿最优PID控制器设计[J].中南大学学报(自然科学版),2004,35(1):91-96. 被引量:29
  • 2李士勇(Li Shiyong).蚁群算法及其应用(Ant Colony Algorithm and Its Applicition)[M].哈尔滨:哈尔滨工业大学出版社(Harbin:Harbin Institute of Technology Press),2004.94-98.
  • 3James Montgomery,Marcus Randall.Anti-Pheromone as a Tool for Better Exploration of Search Space[A].In:Pro-Ceedings of Third International Workshop ANTS[C].Heidelberg:Springer Berlin,2002.100-110.
  • 4段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制,2004,33(2):241-244. 被引量:57
  • 5Bonabeau E,Dorigo M,Theraulaz G.Inspiration for optimization from social insect behaviour[J].Nature,2000,406 (6):39-42.
  • 6史忠植(Shi Zhongzhi).知识发现(Knowledge and Discover)[M].北京:清华大学出版社(Beijing:Tsinghua University Press),2002.275-278.

二级参考文献20

  • 1Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies [ A]. Proceedings of ECAL91 ( European Conference on Artificial Life) [ C ]. Paris, France : 1991.134 - 142.
  • 2Dorigo M, Maniezzo V, Colomi A. The ant system:optimization by a colony of cooperating agents [ J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 1996, 26( 1 ) : 29-41.
  • 3Verbeeck K, Nowe A. Colonies of learning automata [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2002,32(6) : 772 -780.
  • 4Montgomery J, Randall M. Anti-pheromone as a tool for better exploration of search space [A]. Proceedings of Third International Workshop ANTS [C]. Brussels, Belgium:2002. 100 - 110.
  • 5Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6) :39-42.
  • 6Dorigo M, Gambardella L M. Solving symmetric and asym-metric TSPs by ant colonies [ A ]. Proceedings of the IEEE Conference on Evolutionary Computation [ C ]. Nagoya, Japan : 1996. 622-627.
  • 7Thomas S, Holger H H. MAX - MIN ant system [J]. Future Generation Computer Systems, 2000,16 ( 8 ) : 889 - 914.
  • 8Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6) :39 -42.
  • 9Dorigo M, Gambardella L M. Solving symmetric and asym-metric TSPs by ant colonies [ A]. Proceedings of the IEEE Conference on Evolutionary Computation [ C ]. Nagoya, Japan: 1996. 622 -627.
  • 10Thomas S, Holger H H. MAX- MIN ant system [ J]. Future Generation Computer Systems, 2000,16 (8): 889 - 914.

共引文献84

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部