期刊文献+

湿态混凝土抗压强度与本构关系的细观力学分析 被引量:38

MESOMECHANICS ANALYSIS OF COMPRESSIVE STRENGTH AND CONSTITUTIVE EQUATION OF WET CONCRETE
在线阅读 下载PDF
导出
摘要 采用细观断裂力学的方法研究湿态混凝土在外部荷载的作用下,裂纹及孔隙中水压力的大小和影响因素及其对混凝土受力性能的影响。根据湿态混凝土中裂纹的扩展规律,采用分枝型裂纹来研究湿态混凝土的抗压强度,利用能量等价原理来探讨湿态混凝土的本构关系和损伤特征。研究结果表明:(1)分枝型裂纹模型可较好地反映混凝土的体积变形和强度特征;(2)混凝土中的孔隙水压力减小阻碍混凝土开裂的摩阻力,因而加速混凝土的损伤和微裂纹的扩展;(3)与干燥态的混凝土相比,湿态混凝土的抗压强度降低,峰值应变减小,在同一应力水平下湿态混凝土的侧向变形增大。 Mesomechanics analysis is adopted to analyze the effects of pore water pressure, which has close relation not only with the volumetric deformation of concrete, but also with the developing velocity of cracks, on the mechanical properties of wet concrete. In terms of the growth characteristics of cracks in the wet concrete and fracture mechanics, the wing crack model is employed to investigate the compressive strength and the stress-strain relation of wet concrete. The studies of constitutive equation and damage value of wet concrete are based on the energy equilibrium theory. The results of this investigation show that the wing crack model is suitable for describing the volumetric deformation and compressive strength of wet concrete. The free water in the cracks decreases the friction force, which baffles the development of cracks and accelerates the damage of wet concrete, decreasing the compressive strength of wet concrete compared with the dry sample. The critical compressive strain of wet concrete is smaller; but the lateral deformation of wet concrete is larger than that of dry concrete under the same stress level.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2006年第8期1531-1536,共6页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(50225927) 教育部科技创新工程重大项目培育资金项目(704003)
关键词 混凝土 湿态混凝土 细观力学 孔隙水压力 抗压强度 本构方程 concrete wet concrete mesomechanics pore waterpressure compressive strength constitutive equation
  • 相关文献

参考文献12

  • 1Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Material Journal, 1996, 93(3):293 - 300.
  • 2Yaman I O, Hearn N, Aktan H M. Active and non-active porosity in concrete part I: experimental evidence[J]. Materials and Structures,2002, 35(3):102-109.
  • 3Yaman I O, Hearn N, Aktan H M. Active and non-active porosity in concrete part II: evaluation of existing models[J]. Materials and Structures, 2002, 35(3): 110-116.
  • 4Rossi P, Van Mier J G M, Boulay C. The dynamic behaviour of concrete: influence of free water[J]. Materials and Structures, 1992,25: 509-514.
  • 5Horri H, Nemat-Nasser S. Brittle failure in compression: splitting,faulting and brittle-ductile transition[J]. Philosophical Transactions for the Royal Society of London(SeriesA), 1986, 319: 337- 374.
  • 6Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solid: axial splitting and shear failure[J]. Journal of Geophysical Research, 1985, 90(B4): 1305-1325.
  • 7Oshita H, Tanabe T. Water migration phenomenon in concrete in prepeak region[J]. Journal of Engineering Mechanics, 2000, 126(6):565 - 572.
  • 8Li S, Lajtai E Z. Modeling the stress-strain diagram for brittle rock loaded in compression[J]. Mechanics of Materials, 1998, 30(3).- 243 - 251.
  • 9Li C, Prikryl R, Nordlund E. The stress-strain behaviour of rock material related to fracture under compression[J]. Engineering Geology, 1998, 49(3): 293-302.
  • 10Lee S, Ravichandran G. Crack initiation in brittle solids under multiaxial compression[J]. Engineering Fracture Mechanics, 2003,70(13): 1 645 - 1 658.

同被引文献507

引证文献38

二级引证文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部